Smart devices fingerprint detection
The generalized use of mobile devices with Internet connectivity for both 3G and WiFi, allow users to choose the connection they want to use at all times. This behavior requires that Internet service providers must adapt their infrastructure to ensure good levels of Quality of Service in both types...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | |
container_start_page | 302 |
container_title | |
container_volume | |
creator | Granell, E. Bri, D. Tomas, J. Lloret, Jaime |
description | The generalized use of mobile devices with Internet connectivity for both 3G and WiFi, allow users to choose the connection they want to use at all times. This behavior requires that Internet service providers must adapt their infrastructure to ensure good levels of Quality of Service in both types of connections. In this paper, we describe an intelligent system based on neural networks and finite state machines that lets the Internet service provider know to which type of device belongs the traffic going to its network. The system analyzes the transport and application layers from TCP packets to discriminate the percentage of Internet traffic generated by mobile devices and personal computers. Test results show the success of the developed system. |
doi_str_mv | 10.1109/GLOCOMW.2012.6477587 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6477587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6477587</ieee_id><sourcerecordid>6477587</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b1521e3f8bc505f3f84238f9d10141658e2e2ac3bc3449d4f873db4844d2c7703</originalsourceid><addsrcrecordid>eNpVj09LxDAUxOM_cFn7CfSw4Ln1veQlLzlK0XWhSw8qHpc2TSSiVdoi-O2tuAc9zTA_GGaEuEAoEMFdrau6rLdPhQSUhSFmbflAZI4tkmFFjsAcioVEY3IA5qN_TMLxH3YqsnF8AYC52UjlFuLy_q0ZplUXPpMP4yqm_jkMH0Pqf7Ip-Cm992fiJDavY8j2uhSPtzcP5V1e1etNeV3lCVlPeYtaYlDRtl6DjrMhqWx0HQISGm2DDLLxqvWKyHUULauuJUvUSc8MainOf3tTCGE3j5infe32l9U39TRErQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Smart devices fingerprint detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Granell, E. ; Bri, D. ; Tomas, J. ; Lloret, Jaime</creator><creatorcontrib>Granell, E. ; Bri, D. ; Tomas, J. ; Lloret, Jaime</creatorcontrib><description>The generalized use of mobile devices with Internet connectivity for both 3G and WiFi, allow users to choose the connection they want to use at all times. This behavior requires that Internet service providers must adapt their infrastructure to ensure good levels of Quality of Service in both types of connections. In this paper, we describe an intelligent system based on neural networks and finite state machines that lets the Internet service provider know to which type of device belongs the traffic going to its network. The system analyzes the transport and application layers from TCP packets to discriminate the percentage of Internet traffic generated by mobile devices and personal computers. Test results show the success of the developed system.</description><identifier>ISSN: 2166-0077</identifier><identifier>ISBN: 9781467349420</identifier><identifier>ISBN: 1467349429</identifier><identifier>EISSN: 2166-0077</identifier><identifier>EISBN: 9781467349406</identifier><identifier>EISBN: 1467349402</identifier><identifier>EISBN: 9781467349413</identifier><identifier>EISBN: 1467349410</identifier><identifier>DOI: 10.1109/GLOCOMW.2012.6477587</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; Device detection ; Internet ; IP networks ; Mobile handsets ; Network Protocols ; Object recognition ; Operating systems ; Protocols ; Traffic classification ; Traffic Engineering</subject><ispartof>2012 IEEE Globecom Workshops, 2012, p.302-307</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6477587$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6477587$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Granell, E.</creatorcontrib><creatorcontrib>Bri, D.</creatorcontrib><creatorcontrib>Tomas, J.</creatorcontrib><creatorcontrib>Lloret, Jaime</creatorcontrib><title>Smart devices fingerprint detection</title><title>2012 IEEE Globecom Workshops</title><addtitle>GLOCOMW</addtitle><description>The generalized use of mobile devices with Internet connectivity for both 3G and WiFi, allow users to choose the connection they want to use at all times. This behavior requires that Internet service providers must adapt their infrastructure to ensure good levels of Quality of Service in both types of connections. In this paper, we describe an intelligent system based on neural networks and finite state machines that lets the Internet service provider know to which type of device belongs the traffic going to its network. The system analyzes the transport and application layers from TCP packets to discriminate the percentage of Internet traffic generated by mobile devices and personal computers. Test results show the success of the developed system.</description><subject>Computers</subject><subject>Device detection</subject><subject>Internet</subject><subject>IP networks</subject><subject>Mobile handsets</subject><subject>Network Protocols</subject><subject>Object recognition</subject><subject>Operating systems</subject><subject>Protocols</subject><subject>Traffic classification</subject><subject>Traffic Engineering</subject><issn>2166-0077</issn><issn>2166-0077</issn><isbn>9781467349420</isbn><isbn>1467349429</isbn><isbn>9781467349406</isbn><isbn>1467349402</isbn><isbn>9781467349413</isbn><isbn>1467349410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj09LxDAUxOM_cFn7CfSw4Ln1veQlLzlK0XWhSw8qHpc2TSSiVdoi-O2tuAc9zTA_GGaEuEAoEMFdrau6rLdPhQSUhSFmbflAZI4tkmFFjsAcioVEY3IA5qN_TMLxH3YqsnF8AYC52UjlFuLy_q0ZplUXPpMP4yqm_jkMH0Pqf7Ip-Cm992fiJDavY8j2uhSPtzcP5V1e1etNeV3lCVlPeYtaYlDRtl6DjrMhqWx0HQISGm2DDLLxqvWKyHUULauuJUvUSc8MainOf3tTCGE3j5infe32l9U39TRErQ</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Granell, E.</creator><creator>Bri, D.</creator><creator>Tomas, J.</creator><creator>Lloret, Jaime</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Smart devices fingerprint detection</title><author>Granell, E. ; Bri, D. ; Tomas, J. ; Lloret, Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b1521e3f8bc505f3f84238f9d10141658e2e2ac3bc3449d4f873db4844d2c7703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computers</topic><topic>Device detection</topic><topic>Internet</topic><topic>IP networks</topic><topic>Mobile handsets</topic><topic>Network Protocols</topic><topic>Object recognition</topic><topic>Operating systems</topic><topic>Protocols</topic><topic>Traffic classification</topic><topic>Traffic Engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Granell, E.</creatorcontrib><creatorcontrib>Bri, D.</creatorcontrib><creatorcontrib>Tomas, J.</creatorcontrib><creatorcontrib>Lloret, Jaime</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Granell, E.</au><au>Bri, D.</au><au>Tomas, J.</au><au>Lloret, Jaime</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Smart devices fingerprint detection</atitle><btitle>2012 IEEE Globecom Workshops</btitle><stitle>GLOCOMW</stitle><date>2012-12</date><risdate>2012</risdate><spage>302</spage><epage>307</epage><pages>302-307</pages><issn>2166-0077</issn><eissn>2166-0077</eissn><isbn>9781467349420</isbn><isbn>1467349429</isbn><eisbn>9781467349406</eisbn><eisbn>1467349402</eisbn><eisbn>9781467349413</eisbn><eisbn>1467349410</eisbn><abstract>The generalized use of mobile devices with Internet connectivity for both 3G and WiFi, allow users to choose the connection they want to use at all times. This behavior requires that Internet service providers must adapt their infrastructure to ensure good levels of Quality of Service in both types of connections. In this paper, we describe an intelligent system based on neural networks and finite state machines that lets the Internet service provider know to which type of device belongs the traffic going to its network. The system analyzes the transport and application layers from TCP packets to discriminate the percentage of Internet traffic generated by mobile devices and personal computers. Test results show the success of the developed system.</abstract><pub>IEEE</pub><doi>10.1109/GLOCOMW.2012.6477587</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2166-0077 |
ispartof | 2012 IEEE Globecom Workshops, 2012, p.302-307 |
issn | 2166-0077 2166-0077 |
language | eng |
recordid | cdi_ieee_primary_6477587 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computers Device detection Internet IP networks Mobile handsets Network Protocols Object recognition Operating systems Protocols Traffic classification Traffic Engineering |
title | Smart devices fingerprint detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Smart%20devices%20fingerprint%20detection&rft.btitle=2012%20IEEE%20Globecom%20Workshops&rft.au=Granell,%20E.&rft.date=2012-12&rft.spage=302&rft.epage=307&rft.pages=302-307&rft.issn=2166-0077&rft.eissn=2166-0077&rft.isbn=9781467349420&rft.isbn_list=1467349429&rft_id=info:doi/10.1109/GLOCOMW.2012.6477587&rft_dat=%3Cieee_6IE%3E6477587%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467349406&rft.eisbn_list=1467349402&rft.eisbn_list=9781467349413&rft.eisbn_list=1467349410&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6477587&rfr_iscdi=true |