Smart devices fingerprint detection

The generalized use of mobile devices with Internet connectivity for both 3G and WiFi, allow users to choose the connection they want to use at all times. This behavior requires that Internet service providers must adapt their infrastructure to ensure good levels of Quality of Service in both types...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Granell, E., Bri, D., Tomas, J., Lloret, Jaime
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue
container_start_page 302
container_title
container_volume
creator Granell, E.
Bri, D.
Tomas, J.
Lloret, Jaime
description The generalized use of mobile devices with Internet connectivity for both 3G and WiFi, allow users to choose the connection they want to use at all times. This behavior requires that Internet service providers must adapt their infrastructure to ensure good levels of Quality of Service in both types of connections. In this paper, we describe an intelligent system based on neural networks and finite state machines that lets the Internet service provider know to which type of device belongs the traffic going to its network. The system analyzes the transport and application layers from TCP packets to discriminate the percentage of Internet traffic generated by mobile devices and personal computers. Test results show the success of the developed system.
doi_str_mv 10.1109/GLOCOMW.2012.6477587
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6477587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6477587</ieee_id><sourcerecordid>6477587</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b1521e3f8bc505f3f84238f9d10141658e2e2ac3bc3449d4f873db4844d2c7703</originalsourceid><addsrcrecordid>eNpVj09LxDAUxOM_cFn7CfSw4Ln1veQlLzlK0XWhSw8qHpc2TSSiVdoi-O2tuAc9zTA_GGaEuEAoEMFdrau6rLdPhQSUhSFmbflAZI4tkmFFjsAcioVEY3IA5qN_TMLxH3YqsnF8AYC52UjlFuLy_q0ZplUXPpMP4yqm_jkMH0Pqf7Ip-Cm992fiJDavY8j2uhSPtzcP5V1e1etNeV3lCVlPeYtaYlDRtl6DjrMhqWx0HQISGm2DDLLxqvWKyHUULauuJUvUSc8MainOf3tTCGE3j5infe32l9U39TRErQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Smart devices fingerprint detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Granell, E. ; Bri, D. ; Tomas, J. ; Lloret, Jaime</creator><creatorcontrib>Granell, E. ; Bri, D. ; Tomas, J. ; Lloret, Jaime</creatorcontrib><description>The generalized use of mobile devices with Internet connectivity for both 3G and WiFi, allow users to choose the connection they want to use at all times. This behavior requires that Internet service providers must adapt their infrastructure to ensure good levels of Quality of Service in both types of connections. In this paper, we describe an intelligent system based on neural networks and finite state machines that lets the Internet service provider know to which type of device belongs the traffic going to its network. The system analyzes the transport and application layers from TCP packets to discriminate the percentage of Internet traffic generated by mobile devices and personal computers. Test results show the success of the developed system.</description><identifier>ISSN: 2166-0077</identifier><identifier>ISBN: 9781467349420</identifier><identifier>ISBN: 1467349429</identifier><identifier>EISSN: 2166-0077</identifier><identifier>EISBN: 9781467349406</identifier><identifier>EISBN: 1467349402</identifier><identifier>EISBN: 9781467349413</identifier><identifier>EISBN: 1467349410</identifier><identifier>DOI: 10.1109/GLOCOMW.2012.6477587</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; Device detection ; Internet ; IP networks ; Mobile handsets ; Network Protocols ; Object recognition ; Operating systems ; Protocols ; Traffic classification ; Traffic Engineering</subject><ispartof>2012 IEEE Globecom Workshops, 2012, p.302-307</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6477587$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6477587$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Granell, E.</creatorcontrib><creatorcontrib>Bri, D.</creatorcontrib><creatorcontrib>Tomas, J.</creatorcontrib><creatorcontrib>Lloret, Jaime</creatorcontrib><title>Smart devices fingerprint detection</title><title>2012 IEEE Globecom Workshops</title><addtitle>GLOCOMW</addtitle><description>The generalized use of mobile devices with Internet connectivity for both 3G and WiFi, allow users to choose the connection they want to use at all times. This behavior requires that Internet service providers must adapt their infrastructure to ensure good levels of Quality of Service in both types of connections. In this paper, we describe an intelligent system based on neural networks and finite state machines that lets the Internet service provider know to which type of device belongs the traffic going to its network. The system analyzes the transport and application layers from TCP packets to discriminate the percentage of Internet traffic generated by mobile devices and personal computers. Test results show the success of the developed system.</description><subject>Computers</subject><subject>Device detection</subject><subject>Internet</subject><subject>IP networks</subject><subject>Mobile handsets</subject><subject>Network Protocols</subject><subject>Object recognition</subject><subject>Operating systems</subject><subject>Protocols</subject><subject>Traffic classification</subject><subject>Traffic Engineering</subject><issn>2166-0077</issn><issn>2166-0077</issn><isbn>9781467349420</isbn><isbn>1467349429</isbn><isbn>9781467349406</isbn><isbn>1467349402</isbn><isbn>9781467349413</isbn><isbn>1467349410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj09LxDAUxOM_cFn7CfSw4Ln1veQlLzlK0XWhSw8qHpc2TSSiVdoi-O2tuAc9zTA_GGaEuEAoEMFdrau6rLdPhQSUhSFmbflAZI4tkmFFjsAcioVEY3IA5qN_TMLxH3YqsnF8AYC52UjlFuLy_q0ZplUXPpMP4yqm_jkMH0Pqf7Ip-Cm992fiJDavY8j2uhSPtzcP5V1e1etNeV3lCVlPeYtaYlDRtl6DjrMhqWx0HQISGm2DDLLxqvWKyHUULauuJUvUSc8MainOf3tTCGE3j5infe32l9U39TRErQ</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Granell, E.</creator><creator>Bri, D.</creator><creator>Tomas, J.</creator><creator>Lloret, Jaime</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Smart devices fingerprint detection</title><author>Granell, E. ; Bri, D. ; Tomas, J. ; Lloret, Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b1521e3f8bc505f3f84238f9d10141658e2e2ac3bc3449d4f873db4844d2c7703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computers</topic><topic>Device detection</topic><topic>Internet</topic><topic>IP networks</topic><topic>Mobile handsets</topic><topic>Network Protocols</topic><topic>Object recognition</topic><topic>Operating systems</topic><topic>Protocols</topic><topic>Traffic classification</topic><topic>Traffic Engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Granell, E.</creatorcontrib><creatorcontrib>Bri, D.</creatorcontrib><creatorcontrib>Tomas, J.</creatorcontrib><creatorcontrib>Lloret, Jaime</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Granell, E.</au><au>Bri, D.</au><au>Tomas, J.</au><au>Lloret, Jaime</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Smart devices fingerprint detection</atitle><btitle>2012 IEEE Globecom Workshops</btitle><stitle>GLOCOMW</stitle><date>2012-12</date><risdate>2012</risdate><spage>302</spage><epage>307</epage><pages>302-307</pages><issn>2166-0077</issn><eissn>2166-0077</eissn><isbn>9781467349420</isbn><isbn>1467349429</isbn><eisbn>9781467349406</eisbn><eisbn>1467349402</eisbn><eisbn>9781467349413</eisbn><eisbn>1467349410</eisbn><abstract>The generalized use of mobile devices with Internet connectivity for both 3G and WiFi, allow users to choose the connection they want to use at all times. This behavior requires that Internet service providers must adapt their infrastructure to ensure good levels of Quality of Service in both types of connections. In this paper, we describe an intelligent system based on neural networks and finite state machines that lets the Internet service provider know to which type of device belongs the traffic going to its network. The system analyzes the transport and application layers from TCP packets to discriminate the percentage of Internet traffic generated by mobile devices and personal computers. Test results show the success of the developed system.</abstract><pub>IEEE</pub><doi>10.1109/GLOCOMW.2012.6477587</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2166-0077
ispartof 2012 IEEE Globecom Workshops, 2012, p.302-307
issn 2166-0077
2166-0077
language eng
recordid cdi_ieee_primary_6477587
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computers
Device detection
Internet
IP networks
Mobile handsets
Network Protocols
Object recognition
Operating systems
Protocols
Traffic classification
Traffic Engineering
title Smart devices fingerprint detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Smart%20devices%20fingerprint%20detection&rft.btitle=2012%20IEEE%20Globecom%20Workshops&rft.au=Granell,%20E.&rft.date=2012-12&rft.spage=302&rft.epage=307&rft.pages=302-307&rft.issn=2166-0077&rft.eissn=2166-0077&rft.isbn=9781467349420&rft.isbn_list=1467349429&rft_id=info:doi/10.1109/GLOCOMW.2012.6477587&rft_dat=%3Cieee_6IE%3E6477587%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467349406&rft.eisbn_list=1467349402&rft.eisbn_list=9781467349413&rft.eisbn_list=1467349410&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6477587&rfr_iscdi=true