Image denoising using selective neighboring quaternionic wavelet coefficients

Removing noise for image is a classical problem in image processing but it is still relevant issue. In this paper, we adopt an innovative and original approach, which is combined between a recent quaternionic wavelet transform and selective neighbouring coefficients to image denoising. The choice of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kadiri, Mohammed, Djebbouri, Mohamed, Carré, Pilippe
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Kadiri, Mohammed
Djebbouri, Mohamed
Carré, Pilippe
description Removing noise for image is a classical problem in image processing but it is still relevant issue. In this paper, we adopt an innovative and original approach, which is combined between a recent quaternionic wavelet transform and selective neighbouring coefficients to image denoising. The choice of quaternionic transformation is justified by the fact that it gives a very good separation of the coefficients in terms of amplitude and 3-angles phase. This representation generalizes better the concept of analytic signal to the image. Quaternionic transformation retains property of shift invariant but it allows the introduction of a true 2D analysis compared with the traditional complex wavelet transform. After decomposition, selective neighbouring coefficients are used for denoising. Interesting results are obtained by comparing in term of PSNR with the complex wavelet transform and the discrete wavelet transform.
doi_str_mv 10.1109/ICM.2012.6471420
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6471420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6471420</ieee_id><sourcerecordid>6471420</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-31b9250c2c713e55403ccaeaf856a5315c6d8a6b186e2261e0868a52c77dfa893</originalsourceid><addsrcrecordid>eNotkMtOwzAURI0AiVKyR2KTH0i4145fSxTxiNSKDawrx7kJRm0CcVrE31MgmxnN6GgWw9g1Qo4I9rYq1zkH5LkqNBYcTtglFkoLyS2aU5ZYbeZsrDxjC47SZqgUXLAkxncAEKgNWLFg62rnOkob6ocQQ9-l-z-NtCU_hQOlPYXurR7G3_Zz7yYa-zD0wadf7nCEptQP1LbBB-qneMXOW7eNlMy-ZK8P9y_lU7Z6fqzKu1UWUMspE1hbLsFzr1GQlAUI7x251kjlpEDpVWOcqtEo4lwhgVHGySOum9YZK5bs5n83ENHmYww7N35v5jfED8NIUXM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image denoising using selective neighboring quaternionic wavelet coefficients</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kadiri, Mohammed ; Djebbouri, Mohamed ; Carré, Pilippe</creator><creatorcontrib>Kadiri, Mohammed ; Djebbouri, Mohamed ; Carré, Pilippe</creatorcontrib><description>Removing noise for image is a classical problem in image processing but it is still relevant issue. In this paper, we adopt an innovative and original approach, which is combined between a recent quaternionic wavelet transform and selective neighbouring coefficients to image denoising. The choice of quaternionic transformation is justified by the fact that it gives a very good separation of the coefficients in terms of amplitude and 3-angles phase. This representation generalizes better the concept of analytic signal to the image. Quaternionic transformation retains property of shift invariant but it allows the introduction of a true 2D analysis compared with the traditional complex wavelet transform. After decomposition, selective neighbouring coefficients are used for denoising. Interesting results are obtained by comparing in term of PSNR with the complex wavelet transform and the discrete wavelet transform.</description><identifier>ISSN: 2159-1660</identifier><identifier>ISBN: 9781467352895</identifier><identifier>ISBN: 1467352896</identifier><identifier>EISBN: 1467352918</identifier><identifier>EISBN: 9781467352925</identifier><identifier>EISBN: 1467352926</identifier><identifier>EISBN: 9781467352918</identifier><identifier>DOI: 10.1109/ICM.2012.6471420</identifier><language>eng</language><publisher>IEEE</publisher><subject>Complex Wavelet Transform ; Discrete wavelet transforms ; Image denoising ; Neighboring coefficients ; Noise reduction ; Quaternionic Wavelet Transform ; Quaternions ; Thresholding ; Wavelet coefficients</subject><ispartof>2012 24th International Conference on Microelectronics (ICM), 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6471420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6471420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kadiri, Mohammed</creatorcontrib><creatorcontrib>Djebbouri, Mohamed</creatorcontrib><creatorcontrib>Carré, Pilippe</creatorcontrib><title>Image denoising using selective neighboring quaternionic wavelet coefficients</title><title>2012 24th International Conference on Microelectronics (ICM)</title><addtitle>ICM</addtitle><description>Removing noise for image is a classical problem in image processing but it is still relevant issue. In this paper, we adopt an innovative and original approach, which is combined between a recent quaternionic wavelet transform and selective neighbouring coefficients to image denoising. The choice of quaternionic transformation is justified by the fact that it gives a very good separation of the coefficients in terms of amplitude and 3-angles phase. This representation generalizes better the concept of analytic signal to the image. Quaternionic transformation retains property of shift invariant but it allows the introduction of a true 2D analysis compared with the traditional complex wavelet transform. After decomposition, selective neighbouring coefficients are used for denoising. Interesting results are obtained by comparing in term of PSNR with the complex wavelet transform and the discrete wavelet transform.</description><subject>Complex Wavelet Transform</subject><subject>Discrete wavelet transforms</subject><subject>Image denoising</subject><subject>Neighboring coefficients</subject><subject>Noise reduction</subject><subject>Quaternionic Wavelet Transform</subject><subject>Quaternions</subject><subject>Thresholding</subject><subject>Wavelet coefficients</subject><issn>2159-1660</issn><isbn>9781467352895</isbn><isbn>1467352896</isbn><isbn>1467352918</isbn><isbn>9781467352925</isbn><isbn>1467352926</isbn><isbn>9781467352918</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAURI0AiVKyR2KTH0i4145fSxTxiNSKDawrx7kJRm0CcVrE31MgmxnN6GgWw9g1Qo4I9rYq1zkH5LkqNBYcTtglFkoLyS2aU5ZYbeZsrDxjC47SZqgUXLAkxncAEKgNWLFg62rnOkob6ocQQ9-l-z-NtCU_hQOlPYXurR7G3_Zz7yYa-zD0wadf7nCEptQP1LbBB-qneMXOW7eNlMy-ZK8P9y_lU7Z6fqzKu1UWUMspE1hbLsFzr1GQlAUI7x251kjlpEDpVWOcqtEo4lwhgVHGySOum9YZK5bs5n83ENHmYww7N35v5jfED8NIUXM</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Kadiri, Mohammed</creator><creator>Djebbouri, Mohamed</creator><creator>Carré, Pilippe</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Image denoising using selective neighboring quaternionic wavelet coefficients</title><author>Kadiri, Mohammed ; Djebbouri, Mohamed ; Carré, Pilippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-31b9250c2c713e55403ccaeaf856a5315c6d8a6b186e2261e0868a52c77dfa893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Complex Wavelet Transform</topic><topic>Discrete wavelet transforms</topic><topic>Image denoising</topic><topic>Neighboring coefficients</topic><topic>Noise reduction</topic><topic>Quaternionic Wavelet Transform</topic><topic>Quaternions</topic><topic>Thresholding</topic><topic>Wavelet coefficients</topic><toplevel>online_resources</toplevel><creatorcontrib>Kadiri, Mohammed</creatorcontrib><creatorcontrib>Djebbouri, Mohamed</creatorcontrib><creatorcontrib>Carré, Pilippe</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kadiri, Mohammed</au><au>Djebbouri, Mohamed</au><au>Carré, Pilippe</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image denoising using selective neighboring quaternionic wavelet coefficients</atitle><btitle>2012 24th International Conference on Microelectronics (ICM)</btitle><stitle>ICM</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2159-1660</issn><isbn>9781467352895</isbn><isbn>1467352896</isbn><eisbn>1467352918</eisbn><eisbn>9781467352925</eisbn><eisbn>1467352926</eisbn><eisbn>9781467352918</eisbn><abstract>Removing noise for image is a classical problem in image processing but it is still relevant issue. In this paper, we adopt an innovative and original approach, which is combined between a recent quaternionic wavelet transform and selective neighbouring coefficients to image denoising. The choice of quaternionic transformation is justified by the fact that it gives a very good separation of the coefficients in terms of amplitude and 3-angles phase. This representation generalizes better the concept of analytic signal to the image. Quaternionic transformation retains property of shift invariant but it allows the introduction of a true 2D analysis compared with the traditional complex wavelet transform. After decomposition, selective neighbouring coefficients are used for denoising. Interesting results are obtained by comparing in term of PSNR with the complex wavelet transform and the discrete wavelet transform.</abstract><pub>IEEE</pub><doi>10.1109/ICM.2012.6471420</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-1660
ispartof 2012 24th International Conference on Microelectronics (ICM), 2012, p.1-4
issn 2159-1660
language eng
recordid cdi_ieee_primary_6471420
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Complex Wavelet Transform
Discrete wavelet transforms
Image denoising
Neighboring coefficients
Noise reduction
Quaternionic Wavelet Transform
Quaternions
Thresholding
Wavelet coefficients
title Image denoising using selective neighboring quaternionic wavelet coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20denoising%20using%20selective%20neighboring%20quaternionic%20wavelet%20coefficients&rft.btitle=2012%2024th%20International%20Conference%20on%20Microelectronics%20(ICM)&rft.au=Kadiri,%20Mohammed&rft.date=2012-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2159-1660&rft.isbn=9781467352895&rft.isbn_list=1467352896&rft_id=info:doi/10.1109/ICM.2012.6471420&rft_dat=%3Cieee_6IE%3E6471420%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467352918&rft.eisbn_list=9781467352925&rft.eisbn_list=1467352926&rft.eisbn_list=9781467352918&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6471420&rfr_iscdi=true