Non-Gaussian signal detection from multiple sensors using the bootstrap

Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hwa-Tung Ong, Zoubir, A.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344 vol.1
container_issue
container_start_page 340
container_title
container_volume 1
creator Hwa-Tung Ong
Zoubir, A.M.
description Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and compared through simulations with two other multi-sensor methods. Simulation results show that the bootstrap method is better able to keep the level of significance and have high correct detection (as the SNR increases) than the others.
doi_str_mv 10.1109/ICICS.1997.647116
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_647116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>647116</ieee_id><sourcerecordid>647116</sourcerecordid><originalsourceid>FETCH-ieee_primary_6471163</originalsourceid><addsrcrecordid>eNp9jr0OgjAYAJsYE_94AJ36AmCbQgszUXRx0Z1U_cAaaEm_Mvj2mujsLTfccoSsOUs4Z8X2WB7Lc8KLQiUyVZzLCVkwlTMhpJJiRiLEJ_uQppnI8jmpTs7GlR4RjbYUTWt1R-8Q4BaMs7Txrqf92AUzdEARLDqPdERjWxoeQK_OBQxeDysybXSHEP28JJv97lIeYgMA9eBNr_2r_i6Jv_ENXOg7xg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Non-Gaussian signal detection from multiple sensors using the bootstrap</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hwa-Tung Ong ; Zoubir, A.M.</creator><creatorcontrib>Hwa-Tung Ong ; Zoubir, A.M.</creatorcontrib><description>Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and compared through simulations with two other multi-sensor methods. Simulation results show that the bootstrap method is better able to keep the level of significance and have high correct detection (as the SNR increases) than the others.</description><identifier>ISBN: 0780336763</identifier><identifier>ISBN: 9780780336766</identifier><identifier>DOI: 10.1109/ICICS.1997.647116</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Detectors ; Noise level ; Random sequences ; Signal detection ; Signal processing ; Signal to noise ratio ; Statistical analysis ; Statistical distributions ; Testing</subject><ispartof>Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat, 1997, Vol.1, p.340-344 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/647116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/647116$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hwa-Tung Ong</creatorcontrib><creatorcontrib>Zoubir, A.M.</creatorcontrib><title>Non-Gaussian signal detection from multiple sensors using the bootstrap</title><title>Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat</title><addtitle>ICICS</addtitle><description>Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and compared through simulations with two other multi-sensor methods. Simulation results show that the bootstrap method is better able to keep the level of significance and have high correct detection (as the SNR increases) than the others.</description><subject>Australia</subject><subject>Detectors</subject><subject>Noise level</subject><subject>Random sequences</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Testing</subject><isbn>0780336763</isbn><isbn>9780780336766</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jr0OgjAYAJsYE_94AJ36AmCbQgszUXRx0Z1U_cAaaEm_Mvj2mujsLTfccoSsOUs4Z8X2WB7Lc8KLQiUyVZzLCVkwlTMhpJJiRiLEJ_uQppnI8jmpTs7GlR4RjbYUTWt1R-8Q4BaMs7Txrqf92AUzdEARLDqPdERjWxoeQK_OBQxeDysybXSHEP28JJv97lIeYgMA9eBNr_2r_i6Jv_ENXOg7xg</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Hwa-Tung Ong</creator><creator>Zoubir, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Non-Gaussian signal detection from multiple sensors using the bootstrap</title><author>Hwa-Tung Ong ; Zoubir, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_6471163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Australia</topic><topic>Detectors</topic><topic>Noise level</topic><topic>Random sequences</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Hwa-Tung Ong</creatorcontrib><creatorcontrib>Zoubir, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hwa-Tung Ong</au><au>Zoubir, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-Gaussian signal detection from multiple sensors using the bootstrap</atitle><btitle>Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat</btitle><stitle>ICICS</stitle><date>1997</date><risdate>1997</risdate><volume>1</volume><spage>340</spage><epage>344 vol.1</epage><pages>340-344 vol.1</pages><isbn>0780336763</isbn><isbn>9780780336766</isbn><abstract>Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and compared through simulations with two other multi-sensor methods. Simulation results show that the bootstrap method is better able to keep the level of significance and have high correct detection (as the SNR increases) than the others.</abstract><pub>IEEE</pub><doi>10.1109/ICICS.1997.647116</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780336763
ispartof Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat, 1997, Vol.1, p.340-344 vol.1
issn
language eng
recordid cdi_ieee_primary_647116
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Australia
Detectors
Noise level
Random sequences
Signal detection
Signal processing
Signal to noise ratio
Statistical analysis
Statistical distributions
Testing
title Non-Gaussian signal detection from multiple sensors using the bootstrap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-Gaussian%20signal%20detection%20from%20multiple%20sensors%20using%20the%20bootstrap&rft.btitle=Proceedings%20of%20ICICS,%201997%20International%20Conference%20on%20Information,%20Communications%20and%20Signal%20Processing.%20Theme:%20Trends%20in%20Information%20Systems%20Engineering%20and%20Wireless%20Multimedia%20Communications%20(Cat&rft.au=Hwa-Tung%20Ong&rft.date=1997&rft.volume=1&rft.spage=340&rft.epage=344%20vol.1&rft.pages=340-344%20vol.1&rft.isbn=0780336763&rft.isbn_list=9780780336766&rft_id=info:doi/10.1109/ICICS.1997.647116&rft_dat=%3Cieee_6IE%3E647116%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=647116&rfr_iscdi=true