Non-Gaussian signal detection from multiple sensors using the bootstrap
Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and com...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 344 vol.1 |
---|---|
container_issue | |
container_start_page | 340 |
container_title | |
container_volume | 1 |
creator | Hwa-Tung Ong Zoubir, A.M. |
description | Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and compared through simulations with two other multi-sensor methods. Simulation results show that the bootstrap method is better able to keep the level of significance and have high correct detection (as the SNR increases) than the others. |
doi_str_mv | 10.1109/ICICS.1997.647116 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_647116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>647116</ieee_id><sourcerecordid>647116</sourcerecordid><originalsourceid>FETCH-ieee_primary_6471163</originalsourceid><addsrcrecordid>eNp9jr0OgjAYAJsYE_94AJ36AmCbQgszUXRx0Z1U_cAaaEm_Mvj2mujsLTfccoSsOUs4Z8X2WB7Lc8KLQiUyVZzLCVkwlTMhpJJiRiLEJ_uQppnI8jmpTs7GlR4RjbYUTWt1R-8Q4BaMs7Txrqf92AUzdEARLDqPdERjWxoeQK_OBQxeDysybXSHEP28JJv97lIeYgMA9eBNr_2r_i6Jv_ENXOg7xg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Non-Gaussian signal detection from multiple sensors using the bootstrap</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hwa-Tung Ong ; Zoubir, A.M.</creator><creatorcontrib>Hwa-Tung Ong ; Zoubir, A.M.</creatorcontrib><description>Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and compared through simulations with two other multi-sensor methods. Simulation results show that the bootstrap method is better able to keep the level of significance and have high correct detection (as the SNR increases) than the others.</description><identifier>ISBN: 0780336763</identifier><identifier>ISBN: 9780780336766</identifier><identifier>DOI: 10.1109/ICICS.1997.647116</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Detectors ; Noise level ; Random sequences ; Signal detection ; Signal processing ; Signal to noise ratio ; Statistical analysis ; Statistical distributions ; Testing</subject><ispartof>Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat, 1997, Vol.1, p.340-344 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/647116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/647116$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hwa-Tung Ong</creatorcontrib><creatorcontrib>Zoubir, A.M.</creatorcontrib><title>Non-Gaussian signal detection from multiple sensors using the bootstrap</title><title>Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat</title><addtitle>ICICS</addtitle><description>Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and compared through simulations with two other multi-sensor methods. Simulation results show that the bootstrap method is better able to keep the level of significance and have high correct detection (as the SNR increases) than the others.</description><subject>Australia</subject><subject>Detectors</subject><subject>Noise level</subject><subject>Random sequences</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Testing</subject><isbn>0780336763</isbn><isbn>9780780336766</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jr0OgjAYAJsYE_94AJ36AmCbQgszUXRx0Z1U_cAaaEm_Mvj2mujsLTfccoSsOUs4Z8X2WB7Lc8KLQiUyVZzLCVkwlTMhpJJiRiLEJ_uQppnI8jmpTs7GlR4RjbYUTWt1R-8Q4BaMs7Txrqf92AUzdEARLDqPdERjWxoeQK_OBQxeDysybXSHEP28JJv97lIeYgMA9eBNr_2r_i6Jv_ENXOg7xg</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Hwa-Tung Ong</creator><creator>Zoubir, A.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Non-Gaussian signal detection from multiple sensors using the bootstrap</title><author>Hwa-Tung Ong ; Zoubir, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_6471163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Australia</topic><topic>Detectors</topic><topic>Noise level</topic><topic>Random sequences</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Hwa-Tung Ong</creatorcontrib><creatorcontrib>Zoubir, A.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hwa-Tung Ong</au><au>Zoubir, A.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-Gaussian signal detection from multiple sensors using the bootstrap</atitle><btitle>Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat</btitle><stitle>ICICS</stitle><date>1997</date><risdate>1997</risdate><volume>1</volume><spage>340</spage><epage>344 vol.1</epage><pages>340-344 vol.1</pages><isbn>0780336763</isbn><isbn>9780780336766</isbn><abstract>Existing tests based on the cross bispectrum to detect stationary non-Gaussian signals use two sensors or channels of data. We propose to extend such tests to the case of multiple sensors. Our approach uses Bonferroni tests of multiple hypotheses. A multi-sensor bootstrap method is presented and compared through simulations with two other multi-sensor methods. Simulation results show that the bootstrap method is better able to keep the level of significance and have high correct detection (as the SNR increases) than the others.</abstract><pub>IEEE</pub><doi>10.1109/ICICS.1997.647116</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780336763 |
ispartof | Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat, 1997, Vol.1, p.340-344 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_647116 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Australia Detectors Noise level Random sequences Signal detection Signal processing Signal to noise ratio Statistical analysis Statistical distributions Testing |
title | Non-Gaussian signal detection from multiple sensors using the bootstrap |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-Gaussian%20signal%20detection%20from%20multiple%20sensors%20using%20the%20bootstrap&rft.btitle=Proceedings%20of%20ICICS,%201997%20International%20Conference%20on%20Information,%20Communications%20and%20Signal%20Processing.%20Theme:%20Trends%20in%20Information%20Systems%20Engineering%20and%20Wireless%20Multimedia%20Communications%20(Cat&rft.au=Hwa-Tung%20Ong&rft.date=1997&rft.volume=1&rft.spage=340&rft.epage=344%20vol.1&rft.pages=340-344%20vol.1&rft.isbn=0780336763&rft.isbn_list=9780780336766&rft_id=info:doi/10.1109/ICICS.1997.647116&rft_dat=%3Cieee_6IE%3E647116%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=647116&rfr_iscdi=true |