Detecting anomalies in IaaS environments through virtual machine host system call analysis
Providers and consumers of Infrastructure-as-a-Service (IaaS) virtual machine resources may be the subject of a number of attacks, particularly in public cloud environments. Detecting anomalies is hence critical both to protect against misuse and attacks, but is subject to constraints. These include...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | |
container_start_page | 211 |
container_title | |
container_volume | |
creator | Alarifi, S. S. Wolthusen, S. D. |
description | Providers and consumers of Infrastructure-as-a-Service (IaaS) virtual machine resources may be the subject of a number of attacks, particularly in public cloud environments. Detecting anomalies is hence critical both to protect against misuse and attacks, but is subject to constraints. These include primarily efficiency, but also legal and contractual restrictions limiting the depth of intrusiveness, which can be achieved by an intrusion detection system. In many cases, the IaaS provider will also have very limited insights into the actual workloads used by clients. In this paper we therefore propose to monitor system calls at the VM host level without requiring any instrumentation within VMs and argue that this level of granularity is sufficient to capture a number of relevant attack classes. This, together with the efficiency and efficacy of the approach is shown through experiments and statistical analysis in a Linux KVM-based reference scenario. The proposed system, unlike other systems such as VM Introspection (VMI), does not require any knowledge about VMs from inside nor requiring any OS or hypervisor modifications. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6470945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6470945</ieee_id><sourcerecordid>6470945</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-15679c04182cf4fef82032b2d1998a3fe73bab98848c4c8cd6abe73fbf3d6cc73</originalsourceid><addsrcrecordid>eNotzMtKxDAUgOGICOrYJ3CTFyjk1lyWMt4GBmahbtwMp-nJNNKm0mSEvr0FXf3wLf4Lcssds1IwZs0lqZyxXGkjGykadk2qnL8YY5wzLaW4IZ-PWNCXmE4U0jTCEDHTmOgO4I1i-onzlEZMJdPSz9P51NOVyhkGOoLvY0LaT7nQvOSCI_UwDOsHhiXHfEeuAgwZq_9uyMfz0_v2td4fXnbbh30dOWtKzRttnGeKW-GDChisYFK0ouPOWZABjWyhddYq65W3vtPQrhbaIDvtvZEbcv_3jYh4_J7jCPNy1Mowpxr5C5riT-U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detecting anomalies in IaaS environments through virtual machine host system call analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alarifi, S. S. ; Wolthusen, S. D.</creator><creatorcontrib>Alarifi, S. S. ; Wolthusen, S. D.</creatorcontrib><description>Providers and consumers of Infrastructure-as-a-Service (IaaS) virtual machine resources may be the subject of a number of attacks, particularly in public cloud environments. Detecting anomalies is hence critical both to protect against misuse and attacks, but is subject to constraints. These include primarily efficiency, but also legal and contractual restrictions limiting the depth of intrusiveness, which can be achieved by an intrusion detection system. In many cases, the IaaS provider will also have very limited insights into the actual workloads used by clients. In this paper we therefore propose to monitor system calls at the VM host level without requiring any instrumentation within VMs and argue that this level of granularity is sufficient to capture a number of relevant attack classes. This, together with the efficiency and efficacy of the approach is shown through experiments and statistical analysis in a Linux KVM-based reference scenario. The proposed system, unlike other systems such as VM Introspection (VMI), does not require any knowledge about VMs from inside nor requiring any OS or hypervisor modifications.</description><identifier>ISBN: 9781467353250</identifier><identifier>ISBN: 1467353256</identifier><identifier>EISBN: 1908320087</identifier><identifier>EISBN: 9781908320087</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud Computing Security ; Hidden Markov models ; Host-Based Anomaly Detection ; IaaS Security ; IDS ; Internet ; Linux ; Monitoring ; Security ; System Calls Monitoring ; Virtual Machine Monitoring ; Virtual machining</subject><ispartof>2012 International Conference for Internet Technology and Secured Transactions, 2012, p.211-218</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6470945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6470945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alarifi, S. S.</creatorcontrib><creatorcontrib>Wolthusen, S. D.</creatorcontrib><title>Detecting anomalies in IaaS environments through virtual machine host system call analysis</title><title>2012 International Conference for Internet Technology and Secured Transactions</title><addtitle>ICITST</addtitle><description>Providers and consumers of Infrastructure-as-a-Service (IaaS) virtual machine resources may be the subject of a number of attacks, particularly in public cloud environments. Detecting anomalies is hence critical both to protect against misuse and attacks, but is subject to constraints. These include primarily efficiency, but also legal and contractual restrictions limiting the depth of intrusiveness, which can be achieved by an intrusion detection system. In many cases, the IaaS provider will also have very limited insights into the actual workloads used by clients. In this paper we therefore propose to monitor system calls at the VM host level without requiring any instrumentation within VMs and argue that this level of granularity is sufficient to capture a number of relevant attack classes. This, together with the efficiency and efficacy of the approach is shown through experiments and statistical analysis in a Linux KVM-based reference scenario. The proposed system, unlike other systems such as VM Introspection (VMI), does not require any knowledge about VMs from inside nor requiring any OS or hypervisor modifications.</description><subject>Cloud Computing Security</subject><subject>Hidden Markov models</subject><subject>Host-Based Anomaly Detection</subject><subject>IaaS Security</subject><subject>IDS</subject><subject>Internet</subject><subject>Linux</subject><subject>Monitoring</subject><subject>Security</subject><subject>System Calls Monitoring</subject><subject>Virtual Machine Monitoring</subject><subject>Virtual machining</subject><isbn>9781467353250</isbn><isbn>1467353256</isbn><isbn>1908320087</isbn><isbn>9781908320087</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzMtKxDAUgOGICOrYJ3CTFyjk1lyWMt4GBmahbtwMp-nJNNKm0mSEvr0FXf3wLf4Lcssds1IwZs0lqZyxXGkjGykadk2qnL8YY5wzLaW4IZ-PWNCXmE4U0jTCEDHTmOgO4I1i-onzlEZMJdPSz9P51NOVyhkGOoLvY0LaT7nQvOSCI_UwDOsHhiXHfEeuAgwZq_9uyMfz0_v2td4fXnbbh30dOWtKzRttnGeKW-GDChisYFK0ouPOWZABjWyhddYq65W3vtPQrhbaIDvtvZEbcv_3jYh4_J7jCPNy1Mowpxr5C5riT-U</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Alarifi, S. S.</creator><creator>Wolthusen, S. D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Detecting anomalies in IaaS environments through virtual machine host system call analysis</title><author>Alarifi, S. S. ; Wolthusen, S. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-15679c04182cf4fef82032b2d1998a3fe73bab98848c4c8cd6abe73fbf3d6cc73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cloud Computing Security</topic><topic>Hidden Markov models</topic><topic>Host-Based Anomaly Detection</topic><topic>IaaS Security</topic><topic>IDS</topic><topic>Internet</topic><topic>Linux</topic><topic>Monitoring</topic><topic>Security</topic><topic>System Calls Monitoring</topic><topic>Virtual Machine Monitoring</topic><topic>Virtual machining</topic><toplevel>online_resources</toplevel><creatorcontrib>Alarifi, S. S.</creatorcontrib><creatorcontrib>Wolthusen, S. D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alarifi, S. S.</au><au>Wolthusen, S. D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detecting anomalies in IaaS environments through virtual machine host system call analysis</atitle><btitle>2012 International Conference for Internet Technology and Secured Transactions</btitle><stitle>ICITST</stitle><date>2012-12</date><risdate>2012</risdate><spage>211</spage><epage>218</epage><pages>211-218</pages><isbn>9781467353250</isbn><isbn>1467353256</isbn><eisbn>1908320087</eisbn><eisbn>9781908320087</eisbn><abstract>Providers and consumers of Infrastructure-as-a-Service (IaaS) virtual machine resources may be the subject of a number of attacks, particularly in public cloud environments. Detecting anomalies is hence critical both to protect against misuse and attacks, but is subject to constraints. These include primarily efficiency, but also legal and contractual restrictions limiting the depth of intrusiveness, which can be achieved by an intrusion detection system. In many cases, the IaaS provider will also have very limited insights into the actual workloads used by clients. In this paper we therefore propose to monitor system calls at the VM host level without requiring any instrumentation within VMs and argue that this level of granularity is sufficient to capture a number of relevant attack classes. This, together with the efficiency and efficacy of the approach is shown through experiments and statistical analysis in a Linux KVM-based reference scenario. The proposed system, unlike other systems such as VM Introspection (VMI), does not require any knowledge about VMs from inside nor requiring any OS or hypervisor modifications.</abstract><pub>IEEE</pub><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467353250 |
ispartof | 2012 International Conference for Internet Technology and Secured Transactions, 2012, p.211-218 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6470945 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cloud Computing Security Hidden Markov models Host-Based Anomaly Detection IaaS Security IDS Internet Linux Monitoring Security System Calls Monitoring Virtual Machine Monitoring Virtual machining |
title | Detecting anomalies in IaaS environments through virtual machine host system call analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detecting%20anomalies%20in%20IaaS%20environments%20through%20virtual%20machine%20host%20system%20call%20analysis&rft.btitle=2012%20International%20Conference%20for%20Internet%20Technology%20and%20Secured%20Transactions&rft.au=Alarifi,%20S.%20S.&rft.date=2012-12&rft.spage=211&rft.epage=218&rft.pages=211-218&rft.isbn=9781467353250&rft.isbn_list=1467353256&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6470945%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1908320087&rft.eisbn_list=9781908320087&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6470945&rfr_iscdi=true |