Functional ultrasound imaging of the brain: theory and basic principles
Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2013-03, Vol.60 (3), p.492-506 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 506 |
---|---|
container_issue | 3 |
container_start_page | 492 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 60 |
creator | Mace, E. Montaldo, G. Osmanski, B. Cohen, I. Fink, M. Tanter, M. |
description | Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major part of the hemodynamic response occurs. Here, we present a μDoppler ultrasound method able to detect and map the cerebral blood volume (CBV) over the entire brain with an important increase in sensitivity. This method is based on imaging the brain at an ultrafast frame rate (1 kHz) using compounded plane wave emissions. A theoretical model demonstrates that the gain in sensitivity of the μDoppler method is due to the combination of 1) the high signal-to-noise ratio of the gray scale images, resulting from the synthetic compounding of backscattered echoes; and 2) the extensive signal averaging enabled by the high temporal sampling of ultrafast frame rates. This μDoppler imaging is performed in vivo on trepanned rats without the use of contrast agents. The resulting images reveal detailed maps of the rat brain vascularization with an acquisition time as short as 320 ms per slice. This new method is the basis for a real-time functional ultrasound (fUS) imaging of the brain. |
doi_str_mv | 10.1109/TUFFC.2013.2592 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6470411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6470411</ieee_id><sourcerecordid>1316054327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f2b2bb100942794155fb5b2b7d14b08b71079c454b6e735783ddcbdbbcc5f32f3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqUwMyChjCxpff6IYzZUEUCqxNLOlu04xShNip0M_fcktHS6091zr04PQveA5wBYLtaboljOCQY6J1ySCzQFTniaS84v0RTnOU8pBjxBNzF-YwyMSXKNJoQywSVkU_RW9I3tfNvoOunrLujY9k2Z-J3e-mabtFXSfbnEBO2b57FtwyHRA2B09DbZB99Yv69dvEVXla6juzvVGdoUr-vle7r6fPtYvqxSSzPapRUxxBjAWDIiJAPOK8OHkSiBGZwbAVhIyzgzmROUi5yWpTWlMdbyipKKztDTMXcf2p_exU7tfLSurnXj2j4qoJBhzigRA7o4oja0MQZXqeHdnQ4HBViN9tSfPTXaU6O94eLxFN6bnSvP_L-uAXg4At45d15nTGAGQH8BxjtzPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1316054327</pqid></control><display><type>article</type><title>Functional ultrasound imaging of the brain: theory and basic principles</title><source>IEEE Electronic Library (IEL)</source><creator>Mace, E. ; Montaldo, G. ; Osmanski, B. ; Cohen, I. ; Fink, M. ; Tanter, M.</creator><creatorcontrib>Mace, E. ; Montaldo, G. ; Osmanski, B. ; Cohen, I. ; Fink, M. ; Tanter, M.</creatorcontrib><description>Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major part of the hemodynamic response occurs. Here, we present a μDoppler ultrasound method able to detect and map the cerebral blood volume (CBV) over the entire brain with an important increase in sensitivity. This method is based on imaging the brain at an ultrafast frame rate (1 kHz) using compounded plane wave emissions. A theoretical model demonstrates that the gain in sensitivity of the μDoppler method is due to the combination of 1) the high signal-to-noise ratio of the gray scale images, resulting from the synthetic compounding of backscattered echoes; and 2) the extensive signal averaging enabled by the high temporal sampling of ultrafast frame rates. This μDoppler imaging is performed in vivo on trepanned rats without the use of contrast agents. The resulting images reveal detailed maps of the rat brain vascularization with an acquisition time as short as 320 ms per slice. This new method is the basis for a real-time functional ultrasound (fUS) imaging of the brain.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2013.2592</identifier><identifier>PMID: 23475916</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Animals ; Blood ; Brain - blood supply ; Brain Mapping - methods ; Cerebral Angiography ; Cerebrovascular Circulation ; Echoencephalography - methods ; Hemodynamics ; Imaging ; Probes ; Rats ; Rats, Sprague-Dawley ; Sensitivity ; Signal Processing, Computer-Assisted ; Signal-To-Noise Ratio ; Ultrasonic imaging ; Ultrasonography, Doppler - methods</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-03, Vol.60 (3), p.492-506</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f2b2bb100942794155fb5b2b7d14b08b71079c454b6e735783ddcbdbbcc5f32f3</citedby><cites>FETCH-LOGICAL-c363t-f2b2bb100942794155fb5b2b7d14b08b71079c454b6e735783ddcbdbbcc5f32f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6470411$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6470411$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23475916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mace, E.</creatorcontrib><creatorcontrib>Montaldo, G.</creatorcontrib><creatorcontrib>Osmanski, B.</creatorcontrib><creatorcontrib>Cohen, I.</creatorcontrib><creatorcontrib>Fink, M.</creatorcontrib><creatorcontrib>Tanter, M.</creatorcontrib><title>Functional ultrasound imaging of the brain: theory and basic principles</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major part of the hemodynamic response occurs. Here, we present a μDoppler ultrasound method able to detect and map the cerebral blood volume (CBV) over the entire brain with an important increase in sensitivity. This method is based on imaging the brain at an ultrafast frame rate (1 kHz) using compounded plane wave emissions. A theoretical model demonstrates that the gain in sensitivity of the μDoppler method is due to the combination of 1) the high signal-to-noise ratio of the gray scale images, resulting from the synthetic compounding of backscattered echoes; and 2) the extensive signal averaging enabled by the high temporal sampling of ultrafast frame rates. This μDoppler imaging is performed in vivo on trepanned rats without the use of contrast agents. The resulting images reveal detailed maps of the rat brain vascularization with an acquisition time as short as 320 ms per slice. This new method is the basis for a real-time functional ultrasound (fUS) imaging of the brain.</description><subject>Acoustics</subject><subject>Animals</subject><subject>Blood</subject><subject>Brain - blood supply</subject><subject>Brain Mapping - methods</subject><subject>Cerebral Angiography</subject><subject>Cerebrovascular Circulation</subject><subject>Echoencephalography - methods</subject><subject>Hemodynamics</subject><subject>Imaging</subject><subject>Probes</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sensitivity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal-To-Noise Ratio</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography, Doppler - methods</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kD1PwzAQhi0EoqUwMyChjCxpff6IYzZUEUCqxNLOlu04xShNip0M_fcktHS6091zr04PQveA5wBYLtaboljOCQY6J1ySCzQFTniaS84v0RTnOU8pBjxBNzF-YwyMSXKNJoQywSVkU_RW9I3tfNvoOunrLujY9k2Z-J3e-mabtFXSfbnEBO2b57FtwyHRA2B09DbZB99Yv69dvEVXla6juzvVGdoUr-vle7r6fPtYvqxSSzPapRUxxBjAWDIiJAPOK8OHkSiBGZwbAVhIyzgzmROUi5yWpTWlMdbyipKKztDTMXcf2p_exU7tfLSurnXj2j4qoJBhzigRA7o4oja0MQZXqeHdnQ4HBViN9tSfPTXaU6O94eLxFN6bnSvP_L-uAXg4At45d15nTGAGQH8BxjtzPg</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Mace, E.</creator><creator>Montaldo, G.</creator><creator>Osmanski, B.</creator><creator>Cohen, I.</creator><creator>Fink, M.</creator><creator>Tanter, M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130301</creationdate><title>Functional ultrasound imaging of the brain: theory and basic principles</title><author>Mace, E. ; Montaldo, G. ; Osmanski, B. ; Cohen, I. ; Fink, M. ; Tanter, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f2b2bb100942794155fb5b2b7d14b08b71079c454b6e735783ddcbdbbcc5f32f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustics</topic><topic>Animals</topic><topic>Blood</topic><topic>Brain - blood supply</topic><topic>Brain Mapping - methods</topic><topic>Cerebral Angiography</topic><topic>Cerebrovascular Circulation</topic><topic>Echoencephalography - methods</topic><topic>Hemodynamics</topic><topic>Imaging</topic><topic>Probes</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sensitivity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal-To-Noise Ratio</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography, Doppler - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mace, E.</creatorcontrib><creatorcontrib>Montaldo, G.</creatorcontrib><creatorcontrib>Osmanski, B.</creatorcontrib><creatorcontrib>Cohen, I.</creatorcontrib><creatorcontrib>Fink, M.</creatorcontrib><creatorcontrib>Tanter, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mace, E.</au><au>Montaldo, G.</au><au>Osmanski, B.</au><au>Cohen, I.</au><au>Fink, M.</au><au>Tanter, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional ultrasound imaging of the brain: theory and basic principles</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>60</volume><issue>3</issue><spage>492</spage><epage>506</epage><pages>492-506</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major part of the hemodynamic response occurs. Here, we present a μDoppler ultrasound method able to detect and map the cerebral blood volume (CBV) over the entire brain with an important increase in sensitivity. This method is based on imaging the brain at an ultrafast frame rate (1 kHz) using compounded plane wave emissions. A theoretical model demonstrates that the gain in sensitivity of the μDoppler method is due to the combination of 1) the high signal-to-noise ratio of the gray scale images, resulting from the synthetic compounding of backscattered echoes; and 2) the extensive signal averaging enabled by the high temporal sampling of ultrafast frame rates. This μDoppler imaging is performed in vivo on trepanned rats without the use of contrast agents. The resulting images reveal detailed maps of the rat brain vascularization with an acquisition time as short as 320 ms per slice. This new method is the basis for a real-time functional ultrasound (fUS) imaging of the brain.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23475916</pmid><doi>10.1109/TUFFC.2013.2592</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-03, Vol.60 (3), p.492-506 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_ieee_primary_6470411 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Animals Blood Brain - blood supply Brain Mapping - methods Cerebral Angiography Cerebrovascular Circulation Echoencephalography - methods Hemodynamics Imaging Probes Rats Rats, Sprague-Dawley Sensitivity Signal Processing, Computer-Assisted Signal-To-Noise Ratio Ultrasonic imaging Ultrasonography, Doppler - methods |
title | Functional ultrasound imaging of the brain: theory and basic principles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20ultrasound%20imaging%20of%20the%20brain:%20theory%20and%20basic%20principles&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Mace,%20E.&rft.date=2013-03-01&rft.volume=60&rft.issue=3&rft.spage=492&rft.epage=506&rft.pages=492-506&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2013.2592&rft_dat=%3Cproquest_RIE%3E1316054327%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1316054327&rft_id=info:pmid/23475916&rft_ieee_id=6470411&rfr_iscdi=true |