Functional ultrasound imaging of the brain: theory and basic principles

Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2013-03, Vol.60 (3), p.492-506
Hauptverfasser: Mace, E., Montaldo, G., Osmanski, B., Cohen, I., Fink, M., Tanter, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 506
container_issue 3
container_start_page 492
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 60
creator Mace, E.
Montaldo, G.
Osmanski, B.
Cohen, I.
Fink, M.
Tanter, M.
description Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major part of the hemodynamic response occurs. Here, we present a μDoppler ultrasound method able to detect and map the cerebral blood volume (CBV) over the entire brain with an important increase in sensitivity. This method is based on imaging the brain at an ultrafast frame rate (1 kHz) using compounded plane wave emissions. A theoretical model demonstrates that the gain in sensitivity of the μDoppler method is due to the combination of 1) the high signal-to-noise ratio of the gray scale images, resulting from the synthetic compounding of backscattered echoes; and 2) the extensive signal averaging enabled by the high temporal sampling of ultrafast frame rates. This μDoppler imaging is performed in vivo on trepanned rats without the use of contrast agents. The resulting images reveal detailed maps of the rat brain vascularization with an acquisition time as short as 320 ms per slice. This new method is the basis for a real-time functional ultrasound (fUS) imaging of the brain.
doi_str_mv 10.1109/TUFFC.2013.2592
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6470411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6470411</ieee_id><sourcerecordid>1316054327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f2b2bb100942794155fb5b2b7d14b08b71079c454b6e735783ddcbdbbcc5f32f3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqUwMyChjCxpff6IYzZUEUCqxNLOlu04xShNip0M_fcktHS6091zr04PQveA5wBYLtaboljOCQY6J1ySCzQFTniaS84v0RTnOU8pBjxBNzF-YwyMSXKNJoQywSVkU_RW9I3tfNvoOunrLujY9k2Z-J3e-mabtFXSfbnEBO2b57FtwyHRA2B09DbZB99Yv69dvEVXla6juzvVGdoUr-vle7r6fPtYvqxSSzPapRUxxBjAWDIiJAPOK8OHkSiBGZwbAVhIyzgzmROUi5yWpTWlMdbyipKKztDTMXcf2p_exU7tfLSurnXj2j4qoJBhzigRA7o4oja0MQZXqeHdnQ4HBViN9tSfPTXaU6O94eLxFN6bnSvP_L-uAXg4At45d15nTGAGQH8BxjtzPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1316054327</pqid></control><display><type>article</type><title>Functional ultrasound imaging of the brain: theory and basic principles</title><source>IEEE Electronic Library (IEL)</source><creator>Mace, E. ; Montaldo, G. ; Osmanski, B. ; Cohen, I. ; Fink, M. ; Tanter, M.</creator><creatorcontrib>Mace, E. ; Montaldo, G. ; Osmanski, B. ; Cohen, I. ; Fink, M. ; Tanter, M.</creatorcontrib><description>Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major part of the hemodynamic response occurs. Here, we present a μDoppler ultrasound method able to detect and map the cerebral blood volume (CBV) over the entire brain with an important increase in sensitivity. This method is based on imaging the brain at an ultrafast frame rate (1 kHz) using compounded plane wave emissions. A theoretical model demonstrates that the gain in sensitivity of the μDoppler method is due to the combination of 1) the high signal-to-noise ratio of the gray scale images, resulting from the synthetic compounding of backscattered echoes; and 2) the extensive signal averaging enabled by the high temporal sampling of ultrafast frame rates. This μDoppler imaging is performed in vivo on trepanned rats without the use of contrast agents. The resulting images reveal detailed maps of the rat brain vascularization with an acquisition time as short as 320 ms per slice. This new method is the basis for a real-time functional ultrasound (fUS) imaging of the brain.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2013.2592</identifier><identifier>PMID: 23475916</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Animals ; Blood ; Brain - blood supply ; Brain Mapping - methods ; Cerebral Angiography ; Cerebrovascular Circulation ; Echoencephalography - methods ; Hemodynamics ; Imaging ; Probes ; Rats ; Rats, Sprague-Dawley ; Sensitivity ; Signal Processing, Computer-Assisted ; Signal-To-Noise Ratio ; Ultrasonic imaging ; Ultrasonography, Doppler - methods</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-03, Vol.60 (3), p.492-506</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f2b2bb100942794155fb5b2b7d14b08b71079c454b6e735783ddcbdbbcc5f32f3</citedby><cites>FETCH-LOGICAL-c363t-f2b2bb100942794155fb5b2b7d14b08b71079c454b6e735783ddcbdbbcc5f32f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6470411$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6470411$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23475916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mace, E.</creatorcontrib><creatorcontrib>Montaldo, G.</creatorcontrib><creatorcontrib>Osmanski, B.</creatorcontrib><creatorcontrib>Cohen, I.</creatorcontrib><creatorcontrib>Fink, M.</creatorcontrib><creatorcontrib>Tanter, M.</creatorcontrib><title>Functional ultrasound imaging of the brain: theory and basic principles</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major part of the hemodynamic response occurs. Here, we present a μDoppler ultrasound method able to detect and map the cerebral blood volume (CBV) over the entire brain with an important increase in sensitivity. This method is based on imaging the brain at an ultrafast frame rate (1 kHz) using compounded plane wave emissions. A theoretical model demonstrates that the gain in sensitivity of the μDoppler method is due to the combination of 1) the high signal-to-noise ratio of the gray scale images, resulting from the synthetic compounding of backscattered echoes; and 2) the extensive signal averaging enabled by the high temporal sampling of ultrafast frame rates. This μDoppler imaging is performed in vivo on trepanned rats without the use of contrast agents. The resulting images reveal detailed maps of the rat brain vascularization with an acquisition time as short as 320 ms per slice. This new method is the basis for a real-time functional ultrasound (fUS) imaging of the brain.</description><subject>Acoustics</subject><subject>Animals</subject><subject>Blood</subject><subject>Brain - blood supply</subject><subject>Brain Mapping - methods</subject><subject>Cerebral Angiography</subject><subject>Cerebrovascular Circulation</subject><subject>Echoencephalography - methods</subject><subject>Hemodynamics</subject><subject>Imaging</subject><subject>Probes</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sensitivity</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal-To-Noise Ratio</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography, Doppler - methods</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kD1PwzAQhi0EoqUwMyChjCxpff6IYzZUEUCqxNLOlu04xShNip0M_fcktHS6091zr04PQveA5wBYLtaboljOCQY6J1ySCzQFTniaS84v0RTnOU8pBjxBNzF-YwyMSXKNJoQywSVkU_RW9I3tfNvoOunrLujY9k2Z-J3e-mabtFXSfbnEBO2b57FtwyHRA2B09DbZB99Yv69dvEVXla6juzvVGdoUr-vle7r6fPtYvqxSSzPapRUxxBjAWDIiJAPOK8OHkSiBGZwbAVhIyzgzmROUi5yWpTWlMdbyipKKztDTMXcf2p_exU7tfLSurnXj2j4qoJBhzigRA7o4oja0MQZXqeHdnQ4HBViN9tSfPTXaU6O94eLxFN6bnSvP_L-uAXg4At45d15nTGAGQH8BxjtzPg</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Mace, E.</creator><creator>Montaldo, G.</creator><creator>Osmanski, B.</creator><creator>Cohen, I.</creator><creator>Fink, M.</creator><creator>Tanter, M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130301</creationdate><title>Functional ultrasound imaging of the brain: theory and basic principles</title><author>Mace, E. ; Montaldo, G. ; Osmanski, B. ; Cohen, I. ; Fink, M. ; Tanter, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f2b2bb100942794155fb5b2b7d14b08b71079c454b6e735783ddcbdbbcc5f32f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustics</topic><topic>Animals</topic><topic>Blood</topic><topic>Brain - blood supply</topic><topic>Brain Mapping - methods</topic><topic>Cerebral Angiography</topic><topic>Cerebrovascular Circulation</topic><topic>Echoencephalography - methods</topic><topic>Hemodynamics</topic><topic>Imaging</topic><topic>Probes</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sensitivity</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal-To-Noise Ratio</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography, Doppler - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mace, E.</creatorcontrib><creatorcontrib>Montaldo, G.</creatorcontrib><creatorcontrib>Osmanski, B.</creatorcontrib><creatorcontrib>Cohen, I.</creatorcontrib><creatorcontrib>Fink, M.</creatorcontrib><creatorcontrib>Tanter, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mace, E.</au><au>Montaldo, G.</au><au>Osmanski, B.</au><au>Cohen, I.</au><au>Fink, M.</au><au>Tanter, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional ultrasound imaging of the brain: theory and basic principles</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>60</volume><issue>3</issue><spage>492</spage><epage>506</epage><pages>492-506</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Hemodynamic changes in the brain are often used as surrogates of neuronal activity to infer the loci of brain activity. A major limitation of conventional Doppler ultrasound for the imaging of these changes is that it is not sensitive enough to detect the blood flow in small vessels where the major part of the hemodynamic response occurs. Here, we present a μDoppler ultrasound method able to detect and map the cerebral blood volume (CBV) over the entire brain with an important increase in sensitivity. This method is based on imaging the brain at an ultrafast frame rate (1 kHz) using compounded plane wave emissions. A theoretical model demonstrates that the gain in sensitivity of the μDoppler method is due to the combination of 1) the high signal-to-noise ratio of the gray scale images, resulting from the synthetic compounding of backscattered echoes; and 2) the extensive signal averaging enabled by the high temporal sampling of ultrafast frame rates. This μDoppler imaging is performed in vivo on trepanned rats without the use of contrast agents. The resulting images reveal detailed maps of the rat brain vascularization with an acquisition time as short as 320 ms per slice. This new method is the basis for a real-time functional ultrasound (fUS) imaging of the brain.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23475916</pmid><doi>10.1109/TUFFC.2013.2592</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-03, Vol.60 (3), p.492-506
issn 0885-3010
1525-8955
language eng
recordid cdi_ieee_primary_6470411
source IEEE Electronic Library (IEL)
subjects Acoustics
Animals
Blood
Brain - blood supply
Brain Mapping - methods
Cerebral Angiography
Cerebrovascular Circulation
Echoencephalography - methods
Hemodynamics
Imaging
Probes
Rats
Rats, Sprague-Dawley
Sensitivity
Signal Processing, Computer-Assisted
Signal-To-Noise Ratio
Ultrasonic imaging
Ultrasonography, Doppler - methods
title Functional ultrasound imaging of the brain: theory and basic principles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20ultrasound%20imaging%20of%20the%20brain:%20theory%20and%20basic%20principles&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Mace,%20E.&rft.date=2013-03-01&rft.volume=60&rft.issue=3&rft.spage=492&rft.epage=506&rft.pages=492-506&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2013.2592&rft_dat=%3Cproquest_RIE%3E1316054327%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1316054327&rft_id=info:pmid/23475916&rft_ieee_id=6470411&rfr_iscdi=true