Multi-sensor image registration using edge-enhanced maximally stable extremal region
Image registration is an important topic in computer vision and many techniques have been developed. But when it comes to the multi-sensor images, intensity-based global methods often achieve poor results. In this paper, we propose an edge-enhanced maximally stable extremal region method (E-MSER) to...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 905 |
---|---|
container_issue | |
container_start_page | 901 |
container_title | |
container_volume | |
creator | Li Liu Hongya Tuo Tao Xu Zhongliang Jing |
description | Image registration is an important topic in computer vision and many techniques have been developed. But when it comes to the multi-sensor images, intensity-based global methods often achieve poor results. In this paper, we propose an edge-enhanced maximally stable extremal region method (E-MSER) to improve the registration performance of multi-sensor images. It is obtained by combining edge enhancement with maximally stable extremal region (MSER) detector. Thus the region features can maintain stability through the changing image intensities. Criteria including matching score, repeatability, recall, precision and root-mean-square error (RMSE) are used for evaluation. Experiment results show that E-MSER outperforms other detectors with its registration accuracy reaching pixel-level. |
doi_str_mv | 10.1109/CISP.2012.6469944 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6469944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6469944</ieee_id><sourcerecordid>6469944</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bf1b3ad7c0386cada736cf365db4c62d557288d9418c443f85cd0d6538cadf123</originalsourceid><addsrcrecordid>eNpVkN1KAzEQhSMiKHUfQLzJC-yabP4vZfGnUFGwXpdsMrtGtqkkW2jf3qC98eowh_MNMwehG0oaSom565bvb01LaNtILo3h_AxVRmnKpWLESGbO_82CXaIq5y9CSMFlK_kVWr_spznUGWLeJRy2dgScYAx5TnYOu4j3OcQRgx-hhvhpowOPt_ZQktN0xHm2_QQYDnOC4vyiu3iNLgY7ZahOukAfjw_r7rlevT4tu_tVHagSc90PtGfWK0eYls56q5h0A5PC99zJ1guhWq294VQ7ztmghfPElzd0CQ-0ZQt0-7c3AMDmO5Wj0nFz6oL9AHVoU8c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-sensor image registration using edge-enhanced maximally stable extremal region</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li Liu ; Hongya Tuo ; Tao Xu ; Zhongliang Jing</creator><creatorcontrib>Li Liu ; Hongya Tuo ; Tao Xu ; Zhongliang Jing</creatorcontrib><description>Image registration is an important topic in computer vision and many techniques have been developed. But when it comes to the multi-sensor images, intensity-based global methods often achieve poor results. In this paper, we propose an edge-enhanced maximally stable extremal region method (E-MSER) to improve the registration performance of multi-sensor images. It is obtained by combining edge enhancement with maximally stable extremal region (MSER) detector. Thus the region features can maintain stability through the changing image intensities. Criteria including matching score, repeatability, recall, precision and root-mean-square error (RMSE) are used for evaluation. Experiment results show that E-MSER outperforms other detectors with its registration accuracy reaching pixel-level.</description><identifier>ISBN: 9781467309653</identifier><identifier>ISBN: 1467309656</identifier><identifier>EISBN: 9781467309639</identifier><identifier>EISBN: 146730963X</identifier><identifier>EISBN: 1467309648</identifier><identifier>EISBN: 9781467309646</identifier><identifier>DOI: 10.1109/CISP.2012.6469944</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Detectors ; E-MSER ; Feature extraction ; Image edge detection ; Image registration ; MSER ; Multi-sensor ; Performance evaluation ; Robustness ; Vectors</subject><ispartof>2012 5th International Congress on Image and Signal Processing, 2012, p.901-905</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6469944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6469944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li Liu</creatorcontrib><creatorcontrib>Hongya Tuo</creatorcontrib><creatorcontrib>Tao Xu</creatorcontrib><creatorcontrib>Zhongliang Jing</creatorcontrib><title>Multi-sensor image registration using edge-enhanced maximally stable extremal region</title><title>2012 5th International Congress on Image and Signal Processing</title><addtitle>CISP</addtitle><description>Image registration is an important topic in computer vision and many techniques have been developed. But when it comes to the multi-sensor images, intensity-based global methods often achieve poor results. In this paper, we propose an edge-enhanced maximally stable extremal region method (E-MSER) to improve the registration performance of multi-sensor images. It is obtained by combining edge enhancement with maximally stable extremal region (MSER) detector. Thus the region features can maintain stability through the changing image intensities. Criteria including matching score, repeatability, recall, precision and root-mean-square error (RMSE) are used for evaluation. Experiment results show that E-MSER outperforms other detectors with its registration accuracy reaching pixel-level.</description><subject>Accuracy</subject><subject>Detectors</subject><subject>E-MSER</subject><subject>Feature extraction</subject><subject>Image edge detection</subject><subject>Image registration</subject><subject>MSER</subject><subject>Multi-sensor</subject><subject>Performance evaluation</subject><subject>Robustness</subject><subject>Vectors</subject><isbn>9781467309653</isbn><isbn>1467309656</isbn><isbn>9781467309639</isbn><isbn>146730963X</isbn><isbn>1467309648</isbn><isbn>9781467309646</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkN1KAzEQhSMiKHUfQLzJC-yabP4vZfGnUFGwXpdsMrtGtqkkW2jf3qC98eowh_MNMwehG0oaSom565bvb01LaNtILo3h_AxVRmnKpWLESGbO_82CXaIq5y9CSMFlK_kVWr_spznUGWLeJRy2dgScYAx5TnYOu4j3OcQRgx-hhvhpowOPt_ZQktN0xHm2_QQYDnOC4vyiu3iNLgY7ZahOukAfjw_r7rlevT4tu_tVHagSc90PtGfWK0eYls56q5h0A5PC99zJ1guhWq294VQ7ztmghfPElzd0CQ-0ZQt0-7c3AMDmO5Wj0nFz6oL9AHVoU8c</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Li Liu</creator><creator>Hongya Tuo</creator><creator>Tao Xu</creator><creator>Zhongliang Jing</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Multi-sensor image registration using edge-enhanced maximally stable extremal region</title><author>Li Liu ; Hongya Tuo ; Tao Xu ; Zhongliang Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bf1b3ad7c0386cada736cf365db4c62d557288d9418c443f85cd0d6538cadf123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Detectors</topic><topic>E-MSER</topic><topic>Feature extraction</topic><topic>Image edge detection</topic><topic>Image registration</topic><topic>MSER</topic><topic>Multi-sensor</topic><topic>Performance evaluation</topic><topic>Robustness</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Liu</creatorcontrib><creatorcontrib>Hongya Tuo</creatorcontrib><creatorcontrib>Tao Xu</creatorcontrib><creatorcontrib>Zhongliang Jing</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Liu</au><au>Hongya Tuo</au><au>Tao Xu</au><au>Zhongliang Jing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-sensor image registration using edge-enhanced maximally stable extremal region</atitle><btitle>2012 5th International Congress on Image and Signal Processing</btitle><stitle>CISP</stitle><date>2012-10</date><risdate>2012</risdate><spage>901</spage><epage>905</epage><pages>901-905</pages><isbn>9781467309653</isbn><isbn>1467309656</isbn><eisbn>9781467309639</eisbn><eisbn>146730963X</eisbn><eisbn>1467309648</eisbn><eisbn>9781467309646</eisbn><abstract>Image registration is an important topic in computer vision and many techniques have been developed. But when it comes to the multi-sensor images, intensity-based global methods often achieve poor results. In this paper, we propose an edge-enhanced maximally stable extremal region method (E-MSER) to improve the registration performance of multi-sensor images. It is obtained by combining edge enhancement with maximally stable extremal region (MSER) detector. Thus the region features can maintain stability through the changing image intensities. Criteria including matching score, repeatability, recall, precision and root-mean-square error (RMSE) are used for evaluation. Experiment results show that E-MSER outperforms other detectors with its registration accuracy reaching pixel-level.</abstract><pub>IEEE</pub><doi>10.1109/CISP.2012.6469944</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467309653 |
ispartof | 2012 5th International Congress on Image and Signal Processing, 2012, p.901-905 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6469944 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Detectors E-MSER Feature extraction Image edge detection Image registration MSER Multi-sensor Performance evaluation Robustness Vectors |
title | Multi-sensor image registration using edge-enhanced maximally stable extremal region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-sensor%20image%20registration%20using%20edge-enhanced%20maximally%20stable%20extremal%20region&rft.btitle=2012%205th%20International%20Congress%20on%20Image%20and%20Signal%20Processing&rft.au=Li%20Liu&rft.date=2012-10&rft.spage=901&rft.epage=905&rft.pages=901-905&rft.isbn=9781467309653&rft.isbn_list=1467309656&rft_id=info:doi/10.1109/CISP.2012.6469944&rft_dat=%3Cieee_6IE%3E6469944%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467309639&rft.eisbn_list=146730963X&rft.eisbn_list=1467309648&rft.eisbn_list=9781467309646&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6469944&rfr_iscdi=true |