Toward real-time modeling of human heart ventricles at cellular resolution: Simulation of drug-induced arrhythmias
We have developed a highly efficient and scalable cardiac electrophysiology simulation capability that supports groundbreaking resolution and detail to elucidate the mechanisms of sudden cardiac death from arrhythmia. We can simulate thousands of heartbeats at a resolution of 0.1 mm, comparable to t...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Mirin, A. A. Richards, D. F. Glosli, J. N. Draeger, E. W. Chan, B. Fattebert, J. Krauss, W. D. Oppelstrup, T. Rice, J. J. Gunnels, J. A. Gurev, V. Changhoan Kim Magerlein, J. Reumann, M. Hui-Fang Wen |
description | We have developed a highly efficient and scalable cardiac electrophysiology simulation capability that supports groundbreaking resolution and detail to elucidate the mechanisms of sudden cardiac death from arrhythmia. We can simulate thousands of heartbeats at a resolution of 0.1 mm, comparable to the size of cardiac cells, thereby enabling scientific inquiry not previously possible. Based on scaling results from the partially deployed Sequoia IBM Blue Gene/Q machine at Lawrence Livermore National Laboratory and planned optimizations, we estimate that by SC12 we will simulate 8 -- 10 heartbeats per minute -- a time-to-solution 400 -- 500 times faster than the state-of-the-art. Performance between 8 and 11 PFlop/s on the full 1,572,864 cores is anticipated, representing 40 -- 55 percent of peak. The power of the model is demonstrated by illuminating the subtle arrhythmogenic mechanisms of anti-arrhythmic drugs that paradoxically increase arrhythmias in some patient populations. |
doi_str_mv | 10.1109/SC.2012.108 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6468440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6468440</ieee_id><sourcerecordid>6468440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1698-d604a2b4e856d30dba0c8fc9e7c4be979c34caee392e718232f5d6e1151d40873</originalsourceid><addsrcrecordid>eNo9jMlOwzAURc0kAaUrlmz8Ayl-tuOBHaqYpEosWtaVa780Rk6CnATUv6cVw-pe3aNzCbkGNgNg9nY5n3EGfAbMHJGp1Qak0oIZpuwxueCgdCGF0Cfk8g-U6vQfcHtOpn3_zhgDEKbU8oLkVfflcqAZXSqG2CBtuoAptlvaVbQeG9fSGl0e6Ce2Q44-YU_dQD2mNCaX92LfpXGIXXtHl7HZb4d-kEMet0Vsw-gxUJdzvRvqJrr-ipxVLvU4_c0JeXt8WM2fi8Xr08v8flF4UNYUQTHp-EaiKVUQLGwc86byFrWXG7TaeiG9QxSWowbDBa_KoBCghCCZ0WJCbn5-IyKuP3JsXN6tlVRGSia-AVrdX_Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Toward real-time modeling of human heart ventricles at cellular resolution: Simulation of drug-induced arrhythmias</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mirin, A. A. ; Richards, D. F. ; Glosli, J. N. ; Draeger, E. W. ; Chan, B. ; Fattebert, J. ; Krauss, W. D. ; Oppelstrup, T. ; Rice, J. J. ; Gunnels, J. A. ; Gurev, V. ; Changhoan Kim ; Magerlein, J. ; Reumann, M. ; Hui-Fang Wen</creator><creatorcontrib>Mirin, A. A. ; Richards, D. F. ; Glosli, J. N. ; Draeger, E. W. ; Chan, B. ; Fattebert, J. ; Krauss, W. D. ; Oppelstrup, T. ; Rice, J. J. ; Gunnels, J. A. ; Gurev, V. ; Changhoan Kim ; Magerlein, J. ; Reumann, M. ; Hui-Fang Wen</creatorcontrib><description>We have developed a highly efficient and scalable cardiac electrophysiology simulation capability that supports groundbreaking resolution and detail to elucidate the mechanisms of sudden cardiac death from arrhythmia. We can simulate thousands of heartbeats at a resolution of 0.1 mm, comparable to the size of cardiac cells, thereby enabling scientific inquiry not previously possible. Based on scaling results from the partially deployed Sequoia IBM Blue Gene/Q machine at Lawrence Livermore National Laboratory and planned optimizations, we estimate that by SC12 we will simulate 8 -- 10 heartbeats per minute -- a time-to-solution 400 -- 500 times faster than the state-of-the-art. Performance between 8 and 11 PFlop/s on the full 1,572,864 cores is anticipated, representing 40 -- 55 percent of peak. The power of the model is demonstrated by illuminating the subtle arrhythmogenic mechanisms of anti-arrhythmic drugs that paradoxically increase arrhythmias in some patient populations.</description><identifier>ISSN: 2167-4329</identifier><identifier>ISBN: 1467308056</identifier><identifier>ISBN: 9781467308052</identifier><identifier>EISSN: 2167-4337</identifier><identifier>EISBN: 9781467308069</identifier><identifier>EISBN: 9781467308045</identifier><identifier>EISBN: 1467308048</identifier><identifier>EISBN: 1467308064</identifier><identifier>DOI: 10.1109/SC.2012.108</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Equations ; Heart ; Instruction sets ; Logic gates ; Mathematical model ; Message systems</subject><ispartof>2012 International Conference for High Performance Computing, Networking, Storage and Analysis, 2012, p.1-11</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1698-d604a2b4e856d30dba0c8fc9e7c4be979c34caee392e718232f5d6e1151d40873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6468440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6468440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mirin, A. A.</creatorcontrib><creatorcontrib>Richards, D. F.</creatorcontrib><creatorcontrib>Glosli, J. N.</creatorcontrib><creatorcontrib>Draeger, E. W.</creatorcontrib><creatorcontrib>Chan, B.</creatorcontrib><creatorcontrib>Fattebert, J.</creatorcontrib><creatorcontrib>Krauss, W. D.</creatorcontrib><creatorcontrib>Oppelstrup, T.</creatorcontrib><creatorcontrib>Rice, J. J.</creatorcontrib><creatorcontrib>Gunnels, J. A.</creatorcontrib><creatorcontrib>Gurev, V.</creatorcontrib><creatorcontrib>Changhoan Kim</creatorcontrib><creatorcontrib>Magerlein, J.</creatorcontrib><creatorcontrib>Reumann, M.</creatorcontrib><creatorcontrib>Hui-Fang Wen</creatorcontrib><title>Toward real-time modeling of human heart ventricles at cellular resolution: Simulation of drug-induced arrhythmias</title><title>2012 International Conference for High Performance Computing, Networking, Storage and Analysis</title><addtitle>SUPERC</addtitle><description>We have developed a highly efficient and scalable cardiac electrophysiology simulation capability that supports groundbreaking resolution and detail to elucidate the mechanisms of sudden cardiac death from arrhythmia. We can simulate thousands of heartbeats at a resolution of 0.1 mm, comparable to the size of cardiac cells, thereby enabling scientific inquiry not previously possible. Based on scaling results from the partially deployed Sequoia IBM Blue Gene/Q machine at Lawrence Livermore National Laboratory and planned optimizations, we estimate that by SC12 we will simulate 8 -- 10 heartbeats per minute -- a time-to-solution 400 -- 500 times faster than the state-of-the-art. Performance between 8 and 11 PFlop/s on the full 1,572,864 cores is anticipated, representing 40 -- 55 percent of peak. The power of the model is demonstrated by illuminating the subtle arrhythmogenic mechanisms of anti-arrhythmic drugs that paradoxically increase arrhythmias in some patient populations.</description><subject>Biological system modeling</subject><subject>Equations</subject><subject>Heart</subject><subject>Instruction sets</subject><subject>Logic gates</subject><subject>Mathematical model</subject><subject>Message systems</subject><issn>2167-4329</issn><issn>2167-4337</issn><isbn>1467308056</isbn><isbn>9781467308052</isbn><isbn>9781467308069</isbn><isbn>9781467308045</isbn><isbn>1467308048</isbn><isbn>1467308064</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jMlOwzAURc0kAaUrlmz8Ayl-tuOBHaqYpEosWtaVa780Rk6CnATUv6cVw-pe3aNzCbkGNgNg9nY5n3EGfAbMHJGp1Qak0oIZpuwxueCgdCGF0Cfk8g-U6vQfcHtOpn3_zhgDEKbU8oLkVfflcqAZXSqG2CBtuoAptlvaVbQeG9fSGl0e6Ce2Q44-YU_dQD2mNCaX92LfpXGIXXtHl7HZb4d-kEMet0Vsw-gxUJdzvRvqJrr-ipxVLvU4_c0JeXt8WM2fi8Xr08v8flF4UNYUQTHp-EaiKVUQLGwc86byFrWXG7TaeiG9QxSWowbDBa_KoBCghCCZ0WJCbn5-IyKuP3JsXN6tlVRGSia-AVrdX_Q</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Mirin, A. A.</creator><creator>Richards, D. F.</creator><creator>Glosli, J. N.</creator><creator>Draeger, E. W.</creator><creator>Chan, B.</creator><creator>Fattebert, J.</creator><creator>Krauss, W. D.</creator><creator>Oppelstrup, T.</creator><creator>Rice, J. J.</creator><creator>Gunnels, J. A.</creator><creator>Gurev, V.</creator><creator>Changhoan Kim</creator><creator>Magerlein, J.</creator><creator>Reumann, M.</creator><creator>Hui-Fang Wen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Toward real-time modeling of human heart ventricles at cellular resolution: Simulation of drug-induced arrhythmias</title><author>Mirin, A. A. ; Richards, D. F. ; Glosli, J. N. ; Draeger, E. W. ; Chan, B. ; Fattebert, J. ; Krauss, W. D. ; Oppelstrup, T. ; Rice, J. J. ; Gunnels, J. A. ; Gurev, V. ; Changhoan Kim ; Magerlein, J. ; Reumann, M. ; Hui-Fang Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1698-d604a2b4e856d30dba0c8fc9e7c4be979c34caee392e718232f5d6e1151d40873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological system modeling</topic><topic>Equations</topic><topic>Heart</topic><topic>Instruction sets</topic><topic>Logic gates</topic><topic>Mathematical model</topic><topic>Message systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Mirin, A. A.</creatorcontrib><creatorcontrib>Richards, D. F.</creatorcontrib><creatorcontrib>Glosli, J. N.</creatorcontrib><creatorcontrib>Draeger, E. W.</creatorcontrib><creatorcontrib>Chan, B.</creatorcontrib><creatorcontrib>Fattebert, J.</creatorcontrib><creatorcontrib>Krauss, W. D.</creatorcontrib><creatorcontrib>Oppelstrup, T.</creatorcontrib><creatorcontrib>Rice, J. J.</creatorcontrib><creatorcontrib>Gunnels, J. A.</creatorcontrib><creatorcontrib>Gurev, V.</creatorcontrib><creatorcontrib>Changhoan Kim</creatorcontrib><creatorcontrib>Magerlein, J.</creatorcontrib><creatorcontrib>Reumann, M.</creatorcontrib><creatorcontrib>Hui-Fang Wen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mirin, A. A.</au><au>Richards, D. F.</au><au>Glosli, J. N.</au><au>Draeger, E. W.</au><au>Chan, B.</au><au>Fattebert, J.</au><au>Krauss, W. D.</au><au>Oppelstrup, T.</au><au>Rice, J. J.</au><au>Gunnels, J. A.</au><au>Gurev, V.</au><au>Changhoan Kim</au><au>Magerlein, J.</au><au>Reumann, M.</au><au>Hui-Fang Wen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Toward real-time modeling of human heart ventricles at cellular resolution: Simulation of drug-induced arrhythmias</atitle><btitle>2012 International Conference for High Performance Computing, Networking, Storage and Analysis</btitle><stitle>SUPERC</stitle><date>2012-11</date><risdate>2012</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2167-4329</issn><eissn>2167-4337</eissn><isbn>1467308056</isbn><isbn>9781467308052</isbn><eisbn>9781467308069</eisbn><eisbn>9781467308045</eisbn><eisbn>1467308048</eisbn><eisbn>1467308064</eisbn><coden>IEEPAD</coden><abstract>We have developed a highly efficient and scalable cardiac electrophysiology simulation capability that supports groundbreaking resolution and detail to elucidate the mechanisms of sudden cardiac death from arrhythmia. We can simulate thousands of heartbeats at a resolution of 0.1 mm, comparable to the size of cardiac cells, thereby enabling scientific inquiry not previously possible. Based on scaling results from the partially deployed Sequoia IBM Blue Gene/Q machine at Lawrence Livermore National Laboratory and planned optimizations, we estimate that by SC12 we will simulate 8 -- 10 heartbeats per minute -- a time-to-solution 400 -- 500 times faster than the state-of-the-art. Performance between 8 and 11 PFlop/s on the full 1,572,864 cores is anticipated, representing 40 -- 55 percent of peak. The power of the model is demonstrated by illuminating the subtle arrhythmogenic mechanisms of anti-arrhythmic drugs that paradoxically increase arrhythmias in some patient populations.</abstract><pub>IEEE</pub><doi>10.1109/SC.2012.108</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2167-4329 |
ispartof | 2012 International Conference for High Performance Computing, Networking, Storage and Analysis, 2012, p.1-11 |
issn | 2167-4329 2167-4337 |
language | eng |
recordid | cdi_ieee_primary_6468440 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological system modeling Equations Heart Instruction sets Logic gates Mathematical model Message systems |
title | Toward real-time modeling of human heart ventricles at cellular resolution: Simulation of drug-induced arrhythmias |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Toward%20real-time%20modeling%20of%20human%20heart%20ventricles%20at%20cellular%20resolution:%20Simulation%20of%20drug-induced%20arrhythmias&rft.btitle=2012%20International%20Conference%20for%20High%20Performance%20Computing,%20Networking,%20Storage%20and%20Analysis&rft.au=Mirin,%20A.%20A.&rft.date=2012-11&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2167-4329&rft.eissn=2167-4337&rft.isbn=1467308056&rft.isbn_list=9781467308052&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SC.2012.108&rft_dat=%3Cieee_6IE%3E6468440%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467308069&rft.eisbn_list=9781467308045&rft.eisbn_list=1467308048&rft.eisbn_list=1467308064&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6468440&rfr_iscdi=true |