Facecut - a robust approach for facial feature segmentation

Segmentation of facial features is a key pre-processing step in enabling facial recognition, building of 3D facial models, expression analysis, and pose estimation. Recently, graph cuts based algorithms have been adapted to carry out this task but many of these methods require manual initialization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khoa Luu, Le, T. H. N., Seshadri, K., Savvides, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1844
container_issue
container_start_page 1841
container_title
container_volume
creator Khoa Luu
Le, T. H. N.
Seshadri, K.
Savvides, M.
description Segmentation of facial features is a key pre-processing step in enabling facial recognition, building of 3D facial models, expression analysis, and pose estimation. Recently, graph cuts based algorithms have been adapted to carry out this task but many of these methods require manual initialization of points in the foreground and background. In this paper, we propose a novel and fully automatic approach, named Face-Cut, to perform accurate facial feature segmentation. FaceCut combines the positive features of the Modified Active Shape Model (MASM) and GrowCut algorithms to ensure highly accurate and completely automatic segmentation of facial features. We demonstrate the effectiveness of FaceCut on images from two challenging databases.
doi_str_mv 10.1109/ICIP.2012.6467241
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6467241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6467241</ieee_id><sourcerecordid>6467241</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-48c096cea728744cedadb02510dc4b75ebbafd6caea776781e5151171646ed9c3</originalsourceid><addsrcrecordid>eNo1UM1Kw0AYXP_AtPYBxMu-QOJ--5Pd4EmK1UBBD3ouXzZfNNI2YbM5-PYuWE_DMMMMM4zdgigARHVfr-u3QgqQRalLKzWcsVVlHSSipFFKnrNMKge5M7q6YIt_QcMly8BImWvnxDVbTNO3EClIQcYeNujJz5HnHHkYmnmKHMcxDOi_eDcE3qHvcc87wjgH4hN9HugYMfbD8YZddbifaHXCJfvYPL2vX_Lt63O9ftzmPVgTU6sXVekJrXRWa08tto2QBkTrdWMNNQ12bekxOWyZBpEBA2AhzaS28mrJ7v5yeyLajaE_YPjZnU5Qv1Q_S6o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Facecut - a robust approach for facial feature segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khoa Luu ; Le, T. H. N. ; Seshadri, K. ; Savvides, M.</creator><creatorcontrib>Khoa Luu ; Le, T. H. N. ; Seshadri, K. ; Savvides, M.</creatorcontrib><description>Segmentation of facial features is a key pre-processing step in enabling facial recognition, building of 3D facial models, expression analysis, and pose estimation. Recently, graph cuts based algorithms have been adapted to carry out this task but many of these methods require manual initialization of points in the foreground and background. In this paper, we propose a novel and fully automatic approach, named Face-Cut, to perform accurate facial feature segmentation. FaceCut combines the positive features of the Modified Active Shape Model (MASM) and GrowCut algorithms to ensure highly accurate and completely automatic segmentation of facial features. We demonstrate the effectiveness of FaceCut on images from two challenging databases.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1467325341</identifier><identifier>ISBN: 9781467325349</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781467325332</identifier><identifier>EISBN: 1467325325</identifier><identifier>EISBN: 9781467325325</identifier><identifier>EISBN: 1467325333</identifier><identifier>DOI: 10.1109/ICIP.2012.6467241</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active Shape Models (ASMs) ; Face ; Face segmentation ; FaceCut ; Facial features ; facial landmarks ; graph cuts ; Image color analysis ; Image segmentation ; Shape ; Skin</subject><ispartof>2012 19th IEEE International Conference on Image Processing, 2012, p.1841-1844</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6467241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6467241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khoa Luu</creatorcontrib><creatorcontrib>Le, T. H. N.</creatorcontrib><creatorcontrib>Seshadri, K.</creatorcontrib><creatorcontrib>Savvides, M.</creatorcontrib><title>Facecut - a robust approach for facial feature segmentation</title><title>2012 19th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Segmentation of facial features is a key pre-processing step in enabling facial recognition, building of 3D facial models, expression analysis, and pose estimation. Recently, graph cuts based algorithms have been adapted to carry out this task but many of these methods require manual initialization of points in the foreground and background. In this paper, we propose a novel and fully automatic approach, named Face-Cut, to perform accurate facial feature segmentation. FaceCut combines the positive features of the Modified Active Shape Model (MASM) and GrowCut algorithms to ensure highly accurate and completely automatic segmentation of facial features. We demonstrate the effectiveness of FaceCut on images from two challenging databases.</description><subject>Active Shape Models (ASMs)</subject><subject>Face</subject><subject>Face segmentation</subject><subject>FaceCut</subject><subject>Facial features</subject><subject>facial landmarks</subject><subject>graph cuts</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Shape</subject><subject>Skin</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1467325341</isbn><isbn>9781467325349</isbn><isbn>9781467325332</isbn><isbn>1467325325</isbn><isbn>9781467325325</isbn><isbn>1467325333</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1Kw0AYXP_AtPYBxMu-QOJ--5Pd4EmK1UBBD3ouXzZfNNI2YbM5-PYuWE_DMMMMM4zdgigARHVfr-u3QgqQRalLKzWcsVVlHSSipFFKnrNMKge5M7q6YIt_QcMly8BImWvnxDVbTNO3EClIQcYeNujJz5HnHHkYmnmKHMcxDOi_eDcE3qHvcc87wjgH4hN9HugYMfbD8YZddbifaHXCJfvYPL2vX_Lt63O9ftzmPVgTU6sXVekJrXRWa08tto2QBkTrdWMNNQ12bekxOWyZBpEBA2AhzaS28mrJ7v5yeyLajaE_YPjZnU5Qv1Q_S6o</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Khoa Luu</creator><creator>Le, T. H. N.</creator><creator>Seshadri, K.</creator><creator>Savvides, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201209</creationdate><title>Facecut - a robust approach for facial feature segmentation</title><author>Khoa Luu ; Le, T. H. N. ; Seshadri, K. ; Savvides, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-48c096cea728744cedadb02510dc4b75ebbafd6caea776781e5151171646ed9c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active Shape Models (ASMs)</topic><topic>Face</topic><topic>Face segmentation</topic><topic>FaceCut</topic><topic>Facial features</topic><topic>facial landmarks</topic><topic>graph cuts</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Shape</topic><topic>Skin</topic><toplevel>online_resources</toplevel><creatorcontrib>Khoa Luu</creatorcontrib><creatorcontrib>Le, T. H. N.</creatorcontrib><creatorcontrib>Seshadri, K.</creatorcontrib><creatorcontrib>Savvides, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khoa Luu</au><au>Le, T. H. N.</au><au>Seshadri, K.</au><au>Savvides, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Facecut - a robust approach for facial feature segmentation</atitle><btitle>2012 19th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2012-09</date><risdate>2012</risdate><spage>1841</spage><epage>1844</epage><pages>1841-1844</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1467325341</isbn><isbn>9781467325349</isbn><eisbn>9781467325332</eisbn><eisbn>1467325325</eisbn><eisbn>9781467325325</eisbn><eisbn>1467325333</eisbn><abstract>Segmentation of facial features is a key pre-processing step in enabling facial recognition, building of 3D facial models, expression analysis, and pose estimation. Recently, graph cuts based algorithms have been adapted to carry out this task but many of these methods require manual initialization of points in the foreground and background. In this paper, we propose a novel and fully automatic approach, named Face-Cut, to perform accurate facial feature segmentation. FaceCut combines the positive features of the Modified Active Shape Model (MASM) and GrowCut algorithms to ensure highly accurate and completely automatic segmentation of facial features. We demonstrate the effectiveness of FaceCut on images from two challenging databases.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2012.6467241</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2012 19th IEEE International Conference on Image Processing, 2012, p.1841-1844
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_6467241
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active Shape Models (ASMs)
Face
Face segmentation
FaceCut
Facial features
facial landmarks
graph cuts
Image color analysis
Image segmentation
Shape
Skin
title Facecut - a robust approach for facial feature segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Facecut%20-%20a%20robust%20approach%20for%20facial%20feature%20segmentation&rft.btitle=2012%2019th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Khoa%20Luu&rft.date=2012-09&rft.spage=1841&rft.epage=1844&rft.pages=1841-1844&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1467325341&rft.isbn_list=9781467325349&rft_id=info:doi/10.1109/ICIP.2012.6467241&rft_dat=%3Cieee_6IE%3E6467241%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325332&rft.eisbn_list=1467325325&rft.eisbn_list=9781467325325&rft.eisbn_list=1467325333&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6467241&rfr_iscdi=true