A multi-texture approach for estimating iris positions in the eye using 2.5D Active Appearance Models

This paper describes a new approach for the detection of the iris center. Starting from a learning base that only contains people in frontal view and looking in front of them, our model (based on 2.5D Active Appearance Models (AAM)) is capable of capturing the iris movements for both people in front...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Salam, H., Stoiber, N., Seguier, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1836
container_issue
container_start_page 1833
container_title
container_volume
creator Salam, H.
Stoiber, N.
Seguier, R.
description This paper describes a new approach for the detection of the iris center. Starting from a learning base that only contains people in frontal view and looking in front of them, our model (based on 2.5D Active Appearance Models (AAM)) is capable of capturing the iris movements for both people in frontal view and with different head poses. We merge an iris model and a local eye model where holes are put in the place of the white-iris region. The iris texture slides under the eye hole permitting to synthesize and thus analyze any gaze direction. We propose a multi-objective optimization technique to deal with large head poses. We compared our method to a 2.5D AAM trained on faces with different gaze directions and showed that our proposition outperforms it in robustness and accuracy of detection specifically when head pose varies and with subjects wearing eyeglasses.
doi_str_mv 10.1109/ICIP.2012.6467239
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6467239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6467239</ieee_id><sourcerecordid>6467239</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5a66bb688c6ddd56e05a00c574819f86fe5afcc5d376bb70104e7d72da45a9703</originalsourceid><addsrcrecordid>eNo1kMlOwzAYhM0m0ZY-AOLiF0jwbucYlS1SERzgXLn2H2rUJpHtIvr2BFFOo9GMPo0GoWtKSkpJddssmteSEcpKJZRmvDpB80obOhrOJOfsFE0YN7QwUlRnaPofCHqOJlQyVghjyCWapvRJyAjidIKgxrv9Nociw3feR8B2GGJv3Qa3fcSQctjZHLoPHGJIeOhTyKHvEg4dzhvAcAC8T785K-Udrl0OX4DrYQAbbecAP_cetukKXbR2m2B-1Bl6f7h_WzwVy5fHZlEvi0C1zIW0Sq3XyhinvPdSAZGWECe1MLRqjWpB2tY56bkee5pQIkB7zbwV0laa8Bm6-eMGAFgNcRwfD6vjXfwHDzJalA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A multi-texture approach for estimating iris positions in the eye using 2.5D Active Appearance Models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Salam, H. ; Stoiber, N. ; Seguier, R.</creator><creatorcontrib>Salam, H. ; Stoiber, N. ; Seguier, R.</creatorcontrib><description>This paper describes a new approach for the detection of the iris center. Starting from a learning base that only contains people in frontal view and looking in front of them, our model (based on 2.5D Active Appearance Models (AAM)) is capable of capturing the iris movements for both people in frontal view and with different head poses. We merge an iris model and a local eye model where holes are put in the place of the white-iris region. The iris texture slides under the eye hole permitting to synthesize and thus analyze any gaze direction. We propose a multi-objective optimization technique to deal with large head poses. We compared our method to a 2.5D AAM trained on faces with different gaze directions and showed that our proposition outperforms it in robustness and accuracy of detection specifically when head pose varies and with subjects wearing eyeglasses.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1467325341</identifier><identifier>ISBN: 9781467325349</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781467325332</identifier><identifier>EISBN: 1467325325</identifier><identifier>EISBN: 9781467325325</identifier><identifier>EISBN: 1467325333</identifier><identifier>DOI: 10.1109/ICIP.2012.6467239</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active appearance model ; gaze detection ; Head ; Iris ; Iris recognition ; iris tracking ; Optimization ; Skin</subject><ispartof>2012 19th IEEE International Conference on Image Processing, 2012, p.1833-1836</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6467239$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6467239$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salam, H.</creatorcontrib><creatorcontrib>Stoiber, N.</creatorcontrib><creatorcontrib>Seguier, R.</creatorcontrib><title>A multi-texture approach for estimating iris positions in the eye using 2.5D Active Appearance Models</title><title>2012 19th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>This paper describes a new approach for the detection of the iris center. Starting from a learning base that only contains people in frontal view and looking in front of them, our model (based on 2.5D Active Appearance Models (AAM)) is capable of capturing the iris movements for both people in frontal view and with different head poses. We merge an iris model and a local eye model where holes are put in the place of the white-iris region. The iris texture slides under the eye hole permitting to synthesize and thus analyze any gaze direction. We propose a multi-objective optimization technique to deal with large head poses. We compared our method to a 2.5D AAM trained on faces with different gaze directions and showed that our proposition outperforms it in robustness and accuracy of detection specifically when head pose varies and with subjects wearing eyeglasses.</description><subject>Active appearance model</subject><subject>gaze detection</subject><subject>Head</subject><subject>Iris</subject><subject>Iris recognition</subject><subject>iris tracking</subject><subject>Optimization</subject><subject>Skin</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1467325341</isbn><isbn>9781467325349</isbn><isbn>9781467325332</isbn><isbn>1467325325</isbn><isbn>9781467325325</isbn><isbn>1467325333</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMlOwzAYhM0m0ZY-AOLiF0jwbucYlS1SERzgXLn2H2rUJpHtIvr2BFFOo9GMPo0GoWtKSkpJddssmteSEcpKJZRmvDpB80obOhrOJOfsFE0YN7QwUlRnaPofCHqOJlQyVghjyCWapvRJyAjidIKgxrv9Nociw3feR8B2GGJv3Qa3fcSQctjZHLoPHGJIeOhTyKHvEg4dzhvAcAC8T785K-Udrl0OX4DrYQAbbecAP_cetukKXbR2m2B-1Bl6f7h_WzwVy5fHZlEvi0C1zIW0Sq3XyhinvPdSAZGWECe1MLRqjWpB2tY56bkee5pQIkB7zbwV0laa8Bm6-eMGAFgNcRwfD6vjXfwHDzJalA</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Salam, H.</creator><creator>Stoiber, N.</creator><creator>Seguier, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201209</creationdate><title>A multi-texture approach for estimating iris positions in the eye using 2.5D Active Appearance Models</title><author>Salam, H. ; Stoiber, N. ; Seguier, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5a66bb688c6ddd56e05a00c574819f86fe5afcc5d376bb70104e7d72da45a9703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Active appearance model</topic><topic>gaze detection</topic><topic>Head</topic><topic>Iris</topic><topic>Iris recognition</topic><topic>iris tracking</topic><topic>Optimization</topic><topic>Skin</topic><toplevel>online_resources</toplevel><creatorcontrib>Salam, H.</creatorcontrib><creatorcontrib>Stoiber, N.</creatorcontrib><creatorcontrib>Seguier, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salam, H.</au><au>Stoiber, N.</au><au>Seguier, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A multi-texture approach for estimating iris positions in the eye using 2.5D Active Appearance Models</atitle><btitle>2012 19th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2012-09</date><risdate>2012</risdate><spage>1833</spage><epage>1836</epage><pages>1833-1836</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1467325341</isbn><isbn>9781467325349</isbn><eisbn>9781467325332</eisbn><eisbn>1467325325</eisbn><eisbn>9781467325325</eisbn><eisbn>1467325333</eisbn><abstract>This paper describes a new approach for the detection of the iris center. Starting from a learning base that only contains people in frontal view and looking in front of them, our model (based on 2.5D Active Appearance Models (AAM)) is capable of capturing the iris movements for both people in frontal view and with different head poses. We merge an iris model and a local eye model where holes are put in the place of the white-iris region. The iris texture slides under the eye hole permitting to synthesize and thus analyze any gaze direction. We propose a multi-objective optimization technique to deal with large head poses. We compared our method to a 2.5D AAM trained on faces with different gaze directions and showed that our proposition outperforms it in robustness and accuracy of detection specifically when head pose varies and with subjects wearing eyeglasses.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2012.6467239</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2012 19th IEEE International Conference on Image Processing, 2012, p.1833-1836
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_6467239
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active appearance model
gaze detection
Head
Iris
Iris recognition
iris tracking
Optimization
Skin
title A multi-texture approach for estimating iris positions in the eye using 2.5D Active Appearance Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20multi-texture%20approach%20for%20estimating%20iris%20positions%20in%20the%20eye%20using%202.5D%20Active%20Appearance%20Models&rft.btitle=2012%2019th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Salam,%20H.&rft.date=2012-09&rft.spage=1833&rft.epage=1836&rft.pages=1833-1836&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1467325341&rft.isbn_list=9781467325349&rft_id=info:doi/10.1109/ICIP.2012.6467239&rft_dat=%3Cieee_6IE%3E6467239%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325332&rft.eisbn_list=1467325325&rft.eisbn_list=9781467325325&rft.eisbn_list=1467325333&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6467239&rfr_iscdi=true