Demand side management of electric vehicles with uncertainty on arrival and departure times
Uncertainty on arrival and departure times makes the scheduling of plug-in hybrid electric vehicles an intrinsically stochastic optimization problem. To take the stochastic nature of this problem into consideration, a scalable stochastic optimization strategy has been formulated. Generally, stochast...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ruelens, F. Vandael, S. Leterme, W. Claessens, B. J. Hommelberg, M. Holvoet, T. Belmans, R. |
description | Uncertainty on arrival and departure times makes the scheduling of plug-in hybrid electric vehicles an intrinsically stochastic optimization problem. To take the stochastic nature of this problem into consideration, a scalable stochastic optimization strategy has been formulated. Generally, stochastic programming methods are computationally demanding and become impractical for large-scale problems. This work reduced the dimensionality of the scheduling problem with techniques from approximate dynamic programming. To illustrate the advantage of the stochastic algorithm a deterministic method has been formulated. Compared to the deterministic method, the proposed stochastic method can help an aggregator to reduce its expensive peak charging or avoid penalties for not fully charging the batteries of its clients. |
doi_str_mv | 10.1109/ISGTEurope.2012.6465695 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6465695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6465695</ieee_id><sourcerecordid>6465695</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5043990871f48d3f5ea15a5c6260223a7c94be5131e36ee74931d365f54f81173</originalsourceid><addsrcrecordid>eNo9kM1OAjEURutfIuI8gQv7AoO9bW87XRpEJCFxIa5ckDpzR2pmBtIpGN5ejOjqO8lJzuJj7BbECEC4u9nLdDHZxvWGRlKAHBlt0Dg8YZmzBWhjlURn7CkbSDCY60LqM3b1J1Cd_wswlyzr-08hxKFslNAD9vZAre8q3oeK-IH8B7XUJb6uOTVUphhKvqNVKBvq-VdIK77tSorJhy7t-brjPsaw8w3_iVS08TFtI_EUWuqv2UXtm56y4w7Z6-NkMX7K58_T2fh-ngewmHIUWjknCgu1LipVI3lAj6WRRkipvC2dficEBaQMkdVOQaUM1qjrAsCqIbv57QYiWm5iaH3cL48_qW9JWFnI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Demand side management of electric vehicles with uncertainty on arrival and departure times</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ruelens, F. ; Vandael, S. ; Leterme, W. ; Claessens, B. J. ; Hommelberg, M. ; Holvoet, T. ; Belmans, R.</creator><creatorcontrib>Ruelens, F. ; Vandael, S. ; Leterme, W. ; Claessens, B. J. ; Hommelberg, M. ; Holvoet, T. ; Belmans, R.</creatorcontrib><description>Uncertainty on arrival and departure times makes the scheduling of plug-in hybrid electric vehicles an intrinsically stochastic optimization problem. To take the stochastic nature of this problem into consideration, a scalable stochastic optimization strategy has been formulated. Generally, stochastic programming methods are computationally demanding and become impractical for large-scale problems. This work reduced the dimensionality of the scheduling problem with techniques from approximate dynamic programming. To illustrate the advantage of the stochastic algorithm a deterministic method has been formulated. Compared to the deterministic method, the proposed stochastic method can help an aggregator to reduce its expensive peak charging or avoid penalties for not fully charging the batteries of its clients.</description><identifier>ISSN: 2165-4816</identifier><identifier>ISBN: 1467325953</identifier><identifier>ISBN: 9781467325950</identifier><identifier>EISSN: 2165-4824</identifier><identifier>EISBN: 9781467325967</identifier><identifier>EISBN: 9781467325974</identifier><identifier>EISBN: 146732597X</identifier><identifier>EISBN: 1467325961</identifier><identifier>DOI: 10.1109/ISGTEurope.2012.6465695</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace electronics ; approximate dynamic programming ; Approximation algorithms ; Approximation methods ; demand side management ; Dynamic programming ; Optimization ; Processor scheduling ; stochastic optimization ; Stochastic processes</subject><ispartof>2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 2012, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6465695$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6465695$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruelens, F.</creatorcontrib><creatorcontrib>Vandael, S.</creatorcontrib><creatorcontrib>Leterme, W.</creatorcontrib><creatorcontrib>Claessens, B. J.</creatorcontrib><creatorcontrib>Hommelberg, M.</creatorcontrib><creatorcontrib>Holvoet, T.</creatorcontrib><creatorcontrib>Belmans, R.</creatorcontrib><title>Demand side management of electric vehicles with uncertainty on arrival and departure times</title><title>2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)</title><addtitle>ISGTEurope</addtitle><description>Uncertainty on arrival and departure times makes the scheduling of plug-in hybrid electric vehicles an intrinsically stochastic optimization problem. To take the stochastic nature of this problem into consideration, a scalable stochastic optimization strategy has been formulated. Generally, stochastic programming methods are computationally demanding and become impractical for large-scale problems. This work reduced the dimensionality of the scheduling problem with techniques from approximate dynamic programming. To illustrate the advantage of the stochastic algorithm a deterministic method has been formulated. Compared to the deterministic method, the proposed stochastic method can help an aggregator to reduce its expensive peak charging or avoid penalties for not fully charging the batteries of its clients.</description><subject>Aerospace electronics</subject><subject>approximate dynamic programming</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>demand side management</subject><subject>Dynamic programming</subject><subject>Optimization</subject><subject>Processor scheduling</subject><subject>stochastic optimization</subject><subject>Stochastic processes</subject><issn>2165-4816</issn><issn>2165-4824</issn><isbn>1467325953</isbn><isbn>9781467325950</isbn><isbn>9781467325967</isbn><isbn>9781467325974</isbn><isbn>146732597X</isbn><isbn>1467325961</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1OAjEURutfIuI8gQv7AoO9bW87XRpEJCFxIa5ckDpzR2pmBtIpGN5ejOjqO8lJzuJj7BbECEC4u9nLdDHZxvWGRlKAHBlt0Dg8YZmzBWhjlURn7CkbSDCY60LqM3b1J1Cd_wswlyzr-08hxKFslNAD9vZAre8q3oeK-IH8B7XUJb6uOTVUphhKvqNVKBvq-VdIK77tSorJhy7t-brjPsaw8w3_iVS08TFtI_EUWuqv2UXtm56y4w7Z6-NkMX7K58_T2fh-ngewmHIUWjknCgu1LipVI3lAj6WRRkipvC2dficEBaQMkdVOQaUM1qjrAsCqIbv57QYiWm5iaH3cL48_qW9JWFnI</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Ruelens, F.</creator><creator>Vandael, S.</creator><creator>Leterme, W.</creator><creator>Claessens, B. J.</creator><creator>Hommelberg, M.</creator><creator>Holvoet, T.</creator><creator>Belmans, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Demand side management of electric vehicles with uncertainty on arrival and departure times</title><author>Ruelens, F. ; Vandael, S. ; Leterme, W. ; Claessens, B. J. ; Hommelberg, M. ; Holvoet, T. ; Belmans, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5043990871f48d3f5ea15a5c6260223a7c94be5131e36ee74931d365f54f81173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerospace electronics</topic><topic>approximate dynamic programming</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>demand side management</topic><topic>Dynamic programming</topic><topic>Optimization</topic><topic>Processor scheduling</topic><topic>stochastic optimization</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruelens, F.</creatorcontrib><creatorcontrib>Vandael, S.</creatorcontrib><creatorcontrib>Leterme, W.</creatorcontrib><creatorcontrib>Claessens, B. J.</creatorcontrib><creatorcontrib>Hommelberg, M.</creatorcontrib><creatorcontrib>Holvoet, T.</creatorcontrib><creatorcontrib>Belmans, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruelens, F.</au><au>Vandael, S.</au><au>Leterme, W.</au><au>Claessens, B. J.</au><au>Hommelberg, M.</au><au>Holvoet, T.</au><au>Belmans, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Demand side management of electric vehicles with uncertainty on arrival and departure times</atitle><btitle>2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)</btitle><stitle>ISGTEurope</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2165-4816</issn><eissn>2165-4824</eissn><isbn>1467325953</isbn><isbn>9781467325950</isbn><eisbn>9781467325967</eisbn><eisbn>9781467325974</eisbn><eisbn>146732597X</eisbn><eisbn>1467325961</eisbn><abstract>Uncertainty on arrival and departure times makes the scheduling of plug-in hybrid electric vehicles an intrinsically stochastic optimization problem. To take the stochastic nature of this problem into consideration, a scalable stochastic optimization strategy has been formulated. Generally, stochastic programming methods are computationally demanding and become impractical for large-scale problems. This work reduced the dimensionality of the scheduling problem with techniques from approximate dynamic programming. To illustrate the advantage of the stochastic algorithm a deterministic method has been formulated. Compared to the deterministic method, the proposed stochastic method can help an aggregator to reduce its expensive peak charging or avoid penalties for not fully charging the batteries of its clients.</abstract><pub>IEEE</pub><doi>10.1109/ISGTEurope.2012.6465695</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2165-4816 |
ispartof | 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 2012, p.1-8 |
issn | 2165-4816 2165-4824 |
language | eng |
recordid | cdi_ieee_primary_6465695 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aerospace electronics approximate dynamic programming Approximation algorithms Approximation methods demand side management Dynamic programming Optimization Processor scheduling stochastic optimization Stochastic processes |
title | Demand side management of electric vehicles with uncertainty on arrival and departure times |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Demand%20side%20management%20of%20electric%20vehicles%20with%20uncertainty%20on%20arrival%20and%20departure%20times&rft.btitle=2012%203rd%20IEEE%20PES%20Innovative%20Smart%20Grid%20Technologies%20Europe%20(ISGT%20Europe)&rft.au=Ruelens,%20F.&rft.date=2012-10&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2165-4816&rft.eissn=2165-4824&rft.isbn=1467325953&rft.isbn_list=9781467325950&rft_id=info:doi/10.1109/ISGTEurope.2012.6465695&rft_dat=%3Cieee_6IE%3E6465695%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325967&rft.eisbn_list=9781467325974&rft.eisbn_list=146732597X&rft.eisbn_list=1467325961&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6465695&rfr_iscdi=true |