Demand side management of electric vehicles with uncertainty on arrival and departure times

Uncertainty on arrival and departure times makes the scheduling of plug-in hybrid electric vehicles an intrinsically stochastic optimization problem. To take the stochastic nature of this problem into consideration, a scalable stochastic optimization strategy has been formulated. Generally, stochast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ruelens, F., Vandael, S., Leterme, W., Claessens, B. J., Hommelberg, M., Holvoet, T., Belmans, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Ruelens, F.
Vandael, S.
Leterme, W.
Claessens, B. J.
Hommelberg, M.
Holvoet, T.
Belmans, R.
description Uncertainty on arrival and departure times makes the scheduling of plug-in hybrid electric vehicles an intrinsically stochastic optimization problem. To take the stochastic nature of this problem into consideration, a scalable stochastic optimization strategy has been formulated. Generally, stochastic programming methods are computationally demanding and become impractical for large-scale problems. This work reduced the dimensionality of the scheduling problem with techniques from approximate dynamic programming. To illustrate the advantage of the stochastic algorithm a deterministic method has been formulated. Compared to the deterministic method, the proposed stochastic method can help an aggregator to reduce its expensive peak charging or avoid penalties for not fully charging the batteries of its clients.
doi_str_mv 10.1109/ISGTEurope.2012.6465695
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6465695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6465695</ieee_id><sourcerecordid>6465695</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5043990871f48d3f5ea15a5c6260223a7c94be5131e36ee74931d365f54f81173</originalsourceid><addsrcrecordid>eNo9kM1OAjEURutfIuI8gQv7AoO9bW87XRpEJCFxIa5ckDpzR2pmBtIpGN5ejOjqO8lJzuJj7BbECEC4u9nLdDHZxvWGRlKAHBlt0Dg8YZmzBWhjlURn7CkbSDCY60LqM3b1J1Cd_wswlyzr-08hxKFslNAD9vZAre8q3oeK-IH8B7XUJb6uOTVUphhKvqNVKBvq-VdIK77tSorJhy7t-brjPsaw8w3_iVS08TFtI_EUWuqv2UXtm56y4w7Z6-NkMX7K58_T2fh-ngewmHIUWjknCgu1LipVI3lAj6WRRkipvC2dficEBaQMkdVOQaUM1qjrAsCqIbv57QYiWm5iaH3cL48_qW9JWFnI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Demand side management of electric vehicles with uncertainty on arrival and departure times</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ruelens, F. ; Vandael, S. ; Leterme, W. ; Claessens, B. J. ; Hommelberg, M. ; Holvoet, T. ; Belmans, R.</creator><creatorcontrib>Ruelens, F. ; Vandael, S. ; Leterme, W. ; Claessens, B. J. ; Hommelberg, M. ; Holvoet, T. ; Belmans, R.</creatorcontrib><description>Uncertainty on arrival and departure times makes the scheduling of plug-in hybrid electric vehicles an intrinsically stochastic optimization problem. To take the stochastic nature of this problem into consideration, a scalable stochastic optimization strategy has been formulated. Generally, stochastic programming methods are computationally demanding and become impractical for large-scale problems. This work reduced the dimensionality of the scheduling problem with techniques from approximate dynamic programming. To illustrate the advantage of the stochastic algorithm a deterministic method has been formulated. Compared to the deterministic method, the proposed stochastic method can help an aggregator to reduce its expensive peak charging or avoid penalties for not fully charging the batteries of its clients.</description><identifier>ISSN: 2165-4816</identifier><identifier>ISBN: 1467325953</identifier><identifier>ISBN: 9781467325950</identifier><identifier>EISSN: 2165-4824</identifier><identifier>EISBN: 9781467325967</identifier><identifier>EISBN: 9781467325974</identifier><identifier>EISBN: 146732597X</identifier><identifier>EISBN: 1467325961</identifier><identifier>DOI: 10.1109/ISGTEurope.2012.6465695</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace electronics ; approximate dynamic programming ; Approximation algorithms ; Approximation methods ; demand side management ; Dynamic programming ; Optimization ; Processor scheduling ; stochastic optimization ; Stochastic processes</subject><ispartof>2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 2012, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6465695$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6465695$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruelens, F.</creatorcontrib><creatorcontrib>Vandael, S.</creatorcontrib><creatorcontrib>Leterme, W.</creatorcontrib><creatorcontrib>Claessens, B. J.</creatorcontrib><creatorcontrib>Hommelberg, M.</creatorcontrib><creatorcontrib>Holvoet, T.</creatorcontrib><creatorcontrib>Belmans, R.</creatorcontrib><title>Demand side management of electric vehicles with uncertainty on arrival and departure times</title><title>2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)</title><addtitle>ISGTEurope</addtitle><description>Uncertainty on arrival and departure times makes the scheduling of plug-in hybrid electric vehicles an intrinsically stochastic optimization problem. To take the stochastic nature of this problem into consideration, a scalable stochastic optimization strategy has been formulated. Generally, stochastic programming methods are computationally demanding and become impractical for large-scale problems. This work reduced the dimensionality of the scheduling problem with techniques from approximate dynamic programming. To illustrate the advantage of the stochastic algorithm a deterministic method has been formulated. Compared to the deterministic method, the proposed stochastic method can help an aggregator to reduce its expensive peak charging or avoid penalties for not fully charging the batteries of its clients.</description><subject>Aerospace electronics</subject><subject>approximate dynamic programming</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>demand side management</subject><subject>Dynamic programming</subject><subject>Optimization</subject><subject>Processor scheduling</subject><subject>stochastic optimization</subject><subject>Stochastic processes</subject><issn>2165-4816</issn><issn>2165-4824</issn><isbn>1467325953</isbn><isbn>9781467325950</isbn><isbn>9781467325967</isbn><isbn>9781467325974</isbn><isbn>146732597X</isbn><isbn>1467325961</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1OAjEURutfIuI8gQv7AoO9bW87XRpEJCFxIa5ckDpzR2pmBtIpGN5ejOjqO8lJzuJj7BbECEC4u9nLdDHZxvWGRlKAHBlt0Dg8YZmzBWhjlURn7CkbSDCY60LqM3b1J1Cd_wswlyzr-08hxKFslNAD9vZAre8q3oeK-IH8B7XUJb6uOTVUphhKvqNVKBvq-VdIK77tSorJhy7t-brjPsaw8w3_iVS08TFtI_EUWuqv2UXtm56y4w7Z6-NkMX7K58_T2fh-ngewmHIUWjknCgu1LipVI3lAj6WRRkipvC2dficEBaQMkdVOQaUM1qjrAsCqIbv57QYiWm5iaH3cL48_qW9JWFnI</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Ruelens, F.</creator><creator>Vandael, S.</creator><creator>Leterme, W.</creator><creator>Claessens, B. J.</creator><creator>Hommelberg, M.</creator><creator>Holvoet, T.</creator><creator>Belmans, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Demand side management of electric vehicles with uncertainty on arrival and departure times</title><author>Ruelens, F. ; Vandael, S. ; Leterme, W. ; Claessens, B. J. ; Hommelberg, M. ; Holvoet, T. ; Belmans, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5043990871f48d3f5ea15a5c6260223a7c94be5131e36ee74931d365f54f81173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerospace electronics</topic><topic>approximate dynamic programming</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>demand side management</topic><topic>Dynamic programming</topic><topic>Optimization</topic><topic>Processor scheduling</topic><topic>stochastic optimization</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruelens, F.</creatorcontrib><creatorcontrib>Vandael, S.</creatorcontrib><creatorcontrib>Leterme, W.</creatorcontrib><creatorcontrib>Claessens, B. J.</creatorcontrib><creatorcontrib>Hommelberg, M.</creatorcontrib><creatorcontrib>Holvoet, T.</creatorcontrib><creatorcontrib>Belmans, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruelens, F.</au><au>Vandael, S.</au><au>Leterme, W.</au><au>Claessens, B. J.</au><au>Hommelberg, M.</au><au>Holvoet, T.</au><au>Belmans, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Demand side management of electric vehicles with uncertainty on arrival and departure times</atitle><btitle>2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)</btitle><stitle>ISGTEurope</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2165-4816</issn><eissn>2165-4824</eissn><isbn>1467325953</isbn><isbn>9781467325950</isbn><eisbn>9781467325967</eisbn><eisbn>9781467325974</eisbn><eisbn>146732597X</eisbn><eisbn>1467325961</eisbn><abstract>Uncertainty on arrival and departure times makes the scheduling of plug-in hybrid electric vehicles an intrinsically stochastic optimization problem. To take the stochastic nature of this problem into consideration, a scalable stochastic optimization strategy has been formulated. Generally, stochastic programming methods are computationally demanding and become impractical for large-scale problems. This work reduced the dimensionality of the scheduling problem with techniques from approximate dynamic programming. To illustrate the advantage of the stochastic algorithm a deterministic method has been formulated. Compared to the deterministic method, the proposed stochastic method can help an aggregator to reduce its expensive peak charging or avoid penalties for not fully charging the batteries of its clients.</abstract><pub>IEEE</pub><doi>10.1109/ISGTEurope.2012.6465695</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2165-4816
ispartof 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 2012, p.1-8
issn 2165-4816
2165-4824
language eng
recordid cdi_ieee_primary_6465695
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerospace electronics
approximate dynamic programming
Approximation algorithms
Approximation methods
demand side management
Dynamic programming
Optimization
Processor scheduling
stochastic optimization
Stochastic processes
title Demand side management of electric vehicles with uncertainty on arrival and departure times
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Demand%20side%20management%20of%20electric%20vehicles%20with%20uncertainty%20on%20arrival%20and%20departure%20times&rft.btitle=2012%203rd%20IEEE%20PES%20Innovative%20Smart%20Grid%20Technologies%20Europe%20(ISGT%20Europe)&rft.au=Ruelens,%20F.&rft.date=2012-10&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2165-4816&rft.eissn=2165-4824&rft.isbn=1467325953&rft.isbn_list=9781467325950&rft_id=info:doi/10.1109/ISGTEurope.2012.6465695&rft_dat=%3Cieee_6IE%3E6465695%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325967&rft.eisbn_list=9781467325974&rft.eisbn_list=146732597X&rft.eisbn_list=1467325961&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6465695&rfr_iscdi=true