Fast orthogonal transforms for pricing derivatives with quasi-Monte Carlo

There are a number of situations where, when computing prices of financial derivatives using quasi-Monte Carlo (QMC), it turns out to be beneficial to apply an orthogonal transform to the standard normal input variables. Sometimes those transforms can be computed in time O(nlog(n)) for problems depe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Irrgeher, C., Leobacher, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title
container_volume
creator Irrgeher, C.
Leobacher, G.
description There are a number of situations where, when computing prices of financial derivatives using quasi-Monte Carlo (QMC), it turns out to be beneficial to apply an orthogonal transform to the standard normal input variables. Sometimes those transforms can be computed in time O(nlog(n)) for problems depending on n input variables. Among those are classical methods like the Brownian bridge construction and principal component analysis (PCA) construction for Brownian paths. Building on preliminary work by Imai and Tan (2007) as well as Wang and Sloan (2011), where the authors try to find optimal orthogonal transform for given problems, we present how those transforms can be approximated by others that are fast to compute. We further present a new regression-based method for finding a Householder reflection which turns out to be very efficient for a wide range of problems. We apply these methods to several very high-dimensional examples from finance.
doi_str_mv 10.1109/WSC.2012.6465295
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6465295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6465295</ieee_id><sourcerecordid>6465295</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-280c51d0cc09d7a71ab0fa3aeb4e9bf34a0111e3e8d71d5d5876d29ee356839f3</originalsourceid><addsrcrecordid>eNo9kM1KxDAYReMfWMfZC27yAq1J0_wtpTg6MOJCxeXwtfk6E-m0msQR396Cg5t7FxcOh0vIFWcF58zevD3XRcl4WahKydLKI3LBK6VFpU0pj0nGpTR5JZg8-R-0lackY8byXGuhzsk8xnfG2MRT1uqMLBcQEx1D2o6bcYCepgBD7Mawi3RK-hF864cNdRj8HpLfY6TfPm3p5xdEnz-OQ0JaQ-jHS3LWQR9xfugZeV3cvdQP-erpflnfrnLPtUx5aVgruWNty6zToDk0rAMB2FRom05UMMlxFGic5k46abRypUUUUhlhOzEj139cj4jryW8H4Wd9uET8AugjUZQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast orthogonal transforms for pricing derivatives with quasi-Monte Carlo</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Irrgeher, C. ; Leobacher, G.</creator><creatorcontrib>Irrgeher, C. ; Leobacher, G.</creatorcontrib><description>There are a number of situations where, when computing prices of financial derivatives using quasi-Monte Carlo (QMC), it turns out to be beneficial to apply an orthogonal transform to the standard normal input variables. Sometimes those transforms can be computed in time O(nlog(n)) for problems depending on n input variables. Among those are classical methods like the Brownian bridge construction and principal component analysis (PCA) construction for Brownian paths. Building on preliminary work by Imai and Tan (2007) as well as Wang and Sloan (2011), where the authors try to find optimal orthogonal transform for given problems, we present how those transforms can be approximated by others that are fast to compute. We further present a new regression-based method for finding a Householder reflection which turns out to be very efficient for a wide range of problems. We apply these methods to several very high-dimensional examples from finance.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 1467347795</identifier><identifier>ISBN: 9781467347792</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1467347825</identifier><identifier>EISBN: 9781467347815</identifier><identifier>EISBN: 1467347817</identifier><identifier>EISBN: 1467347809</identifier><identifier>EISBN: 9781467347822</identifier><identifier>EISBN: 9781467347808</identifier><identifier>DOI: 10.1109/WSC.2012.6465295</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bridges ; Computational modeling ; Linear approximation ; Principal component analysis ; Transforms ; Vectors</subject><ispartof>Proceedings of the 2012 Winter Simulation Conference (WSC), 2012, p.1-14</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6465295$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6465295$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Irrgeher, C.</creatorcontrib><creatorcontrib>Leobacher, G.</creatorcontrib><title>Fast orthogonal transforms for pricing derivatives with quasi-Monte Carlo</title><title>Proceedings of the 2012 Winter Simulation Conference (WSC)</title><addtitle>WSC</addtitle><description>There are a number of situations where, when computing prices of financial derivatives using quasi-Monte Carlo (QMC), it turns out to be beneficial to apply an orthogonal transform to the standard normal input variables. Sometimes those transforms can be computed in time O(nlog(n)) for problems depending on n input variables. Among those are classical methods like the Brownian bridge construction and principal component analysis (PCA) construction for Brownian paths. Building on preliminary work by Imai and Tan (2007) as well as Wang and Sloan (2011), where the authors try to find optimal orthogonal transform for given problems, we present how those transforms can be approximated by others that are fast to compute. We further present a new regression-based method for finding a Householder reflection which turns out to be very efficient for a wide range of problems. We apply these methods to several very high-dimensional examples from finance.</description><subject>Bridges</subject><subject>Computational modeling</subject><subject>Linear approximation</subject><subject>Principal component analysis</subject><subject>Transforms</subject><subject>Vectors</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>1467347795</isbn><isbn>9781467347792</isbn><isbn>1467347825</isbn><isbn>9781467347815</isbn><isbn>1467347817</isbn><isbn>1467347809</isbn><isbn>9781467347822</isbn><isbn>9781467347808</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1KxDAYReMfWMfZC27yAq1J0_wtpTg6MOJCxeXwtfk6E-m0msQR396Cg5t7FxcOh0vIFWcF58zevD3XRcl4WahKydLKI3LBK6VFpU0pj0nGpTR5JZg8-R-0lackY8byXGuhzsk8xnfG2MRT1uqMLBcQEx1D2o6bcYCepgBD7Mawi3RK-hF864cNdRj8HpLfY6TfPm3p5xdEnz-OQ0JaQ-jHS3LWQR9xfugZeV3cvdQP-erpflnfrnLPtUx5aVgruWNty6zToDk0rAMB2FRom05UMMlxFGic5k46abRypUUUUhlhOzEj139cj4jryW8H4Wd9uET8AugjUZQ</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Irrgeher, C.</creator><creator>Leobacher, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>Fast orthogonal transforms for pricing derivatives with quasi-Monte Carlo</title><author>Irrgeher, C. ; Leobacher, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-280c51d0cc09d7a71ab0fa3aeb4e9bf34a0111e3e8d71d5d5876d29ee356839f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bridges</topic><topic>Computational modeling</topic><topic>Linear approximation</topic><topic>Principal component analysis</topic><topic>Transforms</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Irrgeher, C.</creatorcontrib><creatorcontrib>Leobacher, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Irrgeher, C.</au><au>Leobacher, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast orthogonal transforms for pricing derivatives with quasi-Monte Carlo</atitle><btitle>Proceedings of the 2012 Winter Simulation Conference (WSC)</btitle><stitle>WSC</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>1467347795</isbn><isbn>9781467347792</isbn><eisbn>1467347825</eisbn><eisbn>9781467347815</eisbn><eisbn>1467347817</eisbn><eisbn>1467347809</eisbn><eisbn>9781467347822</eisbn><eisbn>9781467347808</eisbn><abstract>There are a number of situations where, when computing prices of financial derivatives using quasi-Monte Carlo (QMC), it turns out to be beneficial to apply an orthogonal transform to the standard normal input variables. Sometimes those transforms can be computed in time O(nlog(n)) for problems depending on n input variables. Among those are classical methods like the Brownian bridge construction and principal component analysis (PCA) construction for Brownian paths. Building on preliminary work by Imai and Tan (2007) as well as Wang and Sloan (2011), where the authors try to find optimal orthogonal transform for given problems, we present how those transforms can be approximated by others that are fast to compute. We further present a new regression-based method for finding a Householder reflection which turns out to be very efficient for a wide range of problems. We apply these methods to several very high-dimensional examples from finance.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2012.6465295</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0891-7736
ispartof Proceedings of the 2012 Winter Simulation Conference (WSC), 2012, p.1-14
issn 0891-7736
1558-4305
language eng
recordid cdi_ieee_primary_6465295
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bridges
Computational modeling
Linear approximation
Principal component analysis
Transforms
Vectors
title Fast orthogonal transforms for pricing derivatives with quasi-Monte Carlo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20orthogonal%20transforms%20for%20pricing%20derivatives%20with%20quasi-Monte%20Carlo&rft.btitle=Proceedings%20of%20the%202012%20Winter%20Simulation%20Conference%20(WSC)&rft.au=Irrgeher,%20C.&rft.date=2012-12&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=1467347795&rft.isbn_list=9781467347792&rft_id=info:doi/10.1109/WSC.2012.6465295&rft_dat=%3Cieee_6IE%3E6465295%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467347825&rft.eisbn_list=9781467347815&rft.eisbn_list=1467347817&rft.eisbn_list=1467347809&rft.eisbn_list=9781467347822&rft.eisbn_list=9781467347808&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6465295&rfr_iscdi=true