Simulation with data scarcity: Developing a simulation model of a hospital emergency department

Our research was motivated by the resource allocations problem in the Emergency Department at the Prince of Wales Hospital in Hong Kong. We adopted a simulation approach to analysis how the allocation decisions impact patient's experience in the department. The development of the model is compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yong-Hong Kuo, Leung, J. M. Y., Graham, C. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title
container_volume
creator Yong-Hong Kuo
Leung, J. M. Y.
Graham, C. A.
description Our research was motivated by the resource allocations problem in the Emergency Department at the Prince of Wales Hospital in Hong Kong. We adopted a simulation approach to analysis how the allocation decisions impact patient's experience in the department. The development of the model is complicated by the fact that there are different categories of patients (with different time-varying arrival rates, treatments and procedures), and the data records were incomplete to allow direct estimation of many of the key operational parameters (e.g. the duration of doctor's consultation). To tackle the first issue, patients' arrivals are modelled as Poisson processes with category and time-dependent arrival rates. The second issue is resolved by positing a general distribution (Weibull) for some key processes, and developing meta-heuristic approaches to jointly estimate the distribution parameters. Our computational results show that accurate estimates of the distribution parameters are found using our proposed search procedure, in that the simulated results and the actual data were consistent.
doi_str_mv 10.1109/WSC.2012.6465061
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6465061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6465061</ieee_id><sourcerecordid>6465061</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c7de941b332943d7198857491ef7ceb7240dabfd5343cc5b0462881c560b79eb3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUheMLrLV7wU3-wNTcydudtL6g4KKKy5JJ7rSReTETlfn3Fiy6OvCdw7c4hFwBmwMwe_O-XsxzBvlcCSWZgiNyAUJpLrTJ5TGZgJQmE5zJk79CW3lKJsxYyLTm6pzMhuGDMbb3KWv1hGzWsf6sXIptQ79j2tHgkqODd72PabylS_zCqu1is6V7_L-t24AVbcs93bVDF5OrKNbYb7HxIw3YuT7V2KRLcla6asDZIafk7eH-dfGUrV4enxd3qyyClinzOqAVUHCeW8GDBmuM1MICltpjoXPBgivKILng3suCCZUbA14qVmiLBZ-S619vRMRN18fa9ePmcBT_AfcRWOQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Simulation with data scarcity: Developing a simulation model of a hospital emergency department</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yong-Hong Kuo ; Leung, J. M. Y. ; Graham, C. A.</creator><creatorcontrib>Yong-Hong Kuo ; Leung, J. M. Y. ; Graham, C. A.</creatorcontrib><description>Our research was motivated by the resource allocations problem in the Emergency Department at the Prince of Wales Hospital in Hong Kong. We adopted a simulation approach to analysis how the allocation decisions impact patient's experience in the department. The development of the model is complicated by the fact that there are different categories of patients (with different time-varying arrival rates, treatments and procedures), and the data records were incomplete to allow direct estimation of many of the key operational parameters (e.g. the duration of doctor's consultation). To tackle the first issue, patients' arrivals are modelled as Poisson processes with category and time-dependent arrival rates. The second issue is resolved by positing a general distribution (Weibull) for some key processes, and developing meta-heuristic approaches to jointly estimate the distribution parameters. Our computational results show that accurate estimates of the distribution parameters are found using our proposed search procedure, in that the simulated results and the actual data were consistent.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 1467347795</identifier><identifier>ISBN: 9781467347792</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1467347825</identifier><identifier>EISBN: 9781467347815</identifier><identifier>EISBN: 1467347817</identifier><identifier>EISBN: 1467347809</identifier><identifier>EISBN: 9781467347822</identifier><identifier>EISBN: 9781467347808</identifier><identifier>DOI: 10.1109/WSC.2012.6465061</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Data models ; Hospitals ; Search problems</subject><ispartof>Proceedings of the 2012 Winter Simulation Conference (WSC), 2012, p.1-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6465061$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6465061$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yong-Hong Kuo</creatorcontrib><creatorcontrib>Leung, J. M. Y.</creatorcontrib><creatorcontrib>Graham, C. A.</creatorcontrib><title>Simulation with data scarcity: Developing a simulation model of a hospital emergency department</title><title>Proceedings of the 2012 Winter Simulation Conference (WSC)</title><addtitle>WSC</addtitle><description>Our research was motivated by the resource allocations problem in the Emergency Department at the Prince of Wales Hospital in Hong Kong. We adopted a simulation approach to analysis how the allocation decisions impact patient's experience in the department. The development of the model is complicated by the fact that there are different categories of patients (with different time-varying arrival rates, treatments and procedures), and the data records were incomplete to allow direct estimation of many of the key operational parameters (e.g. the duration of doctor's consultation). To tackle the first issue, patients' arrivals are modelled as Poisson processes with category and time-dependent arrival rates. The second issue is resolved by positing a general distribution (Weibull) for some key processes, and developing meta-heuristic approaches to jointly estimate the distribution parameters. Our computational results show that accurate estimates of the distribution parameters are found using our proposed search procedure, in that the simulated results and the actual data were consistent.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Hospitals</subject><subject>Search problems</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>1467347795</isbn><isbn>9781467347792</isbn><isbn>1467347825</isbn><isbn>9781467347815</isbn><isbn>1467347817</isbn><isbn>1467347809</isbn><isbn>9781467347822</isbn><isbn>9781467347808</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLAzEUheMLrLV7wU3-wNTcydudtL6g4KKKy5JJ7rSReTETlfn3Fiy6OvCdw7c4hFwBmwMwe_O-XsxzBvlcCSWZgiNyAUJpLrTJ5TGZgJQmE5zJk79CW3lKJsxYyLTm6pzMhuGDMbb3KWv1hGzWsf6sXIptQ79j2tHgkqODd72PabylS_zCqu1is6V7_L-t24AVbcs93bVDF5OrKNbYb7HxIw3YuT7V2KRLcla6asDZIafk7eH-dfGUrV4enxd3qyyClinzOqAVUHCeW8GDBmuM1MICltpjoXPBgivKILng3suCCZUbA14qVmiLBZ-S619vRMRN18fa9ePmcBT_AfcRWOQ</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Yong-Hong Kuo</creator><creator>Leung, J. M. Y.</creator><creator>Graham, C. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>Simulation with data scarcity: Developing a simulation model of a hospital emergency department</title><author>Yong-Hong Kuo ; Leung, J. M. Y. ; Graham, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c7de941b332943d7198857491ef7ceb7240dabfd5343cc5b0462881c560b79eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Hospitals</topic><topic>Search problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Yong-Hong Kuo</creatorcontrib><creatorcontrib>Leung, J. M. Y.</creatorcontrib><creatorcontrib>Graham, C. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yong-Hong Kuo</au><au>Leung, J. M. Y.</au><au>Graham, C. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Simulation with data scarcity: Developing a simulation model of a hospital emergency department</atitle><btitle>Proceedings of the 2012 Winter Simulation Conference (WSC)</btitle><stitle>WSC</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>1467347795</isbn><isbn>9781467347792</isbn><eisbn>1467347825</eisbn><eisbn>9781467347815</eisbn><eisbn>1467347817</eisbn><eisbn>1467347809</eisbn><eisbn>9781467347822</eisbn><eisbn>9781467347808</eisbn><abstract>Our research was motivated by the resource allocations problem in the Emergency Department at the Prince of Wales Hospital in Hong Kong. We adopted a simulation approach to analysis how the allocation decisions impact patient's experience in the department. The development of the model is complicated by the fact that there are different categories of patients (with different time-varying arrival rates, treatments and procedures), and the data records were incomplete to allow direct estimation of many of the key operational parameters (e.g. the duration of doctor's consultation). To tackle the first issue, patients' arrivals are modelled as Poisson processes with category and time-dependent arrival rates. The second issue is resolved by positing a general distribution (Weibull) for some key processes, and developing meta-heuristic approaches to jointly estimate the distribution parameters. Our computational results show that accurate estimates of the distribution parameters are found using our proposed search procedure, in that the simulated results and the actual data were consistent.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2012.6465061</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0891-7736
ispartof Proceedings of the 2012 Winter Simulation Conference (WSC), 2012, p.1-12
issn 0891-7736
1558-4305
language eng
recordid cdi_ieee_primary_6465061
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Computational modeling
Data models
Hospitals
Search problems
title Simulation with data scarcity: Developing a simulation model of a hospital emergency department
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Simulation%20with%20data%20scarcity:%20Developing%20a%20simulation%20model%20of%20a%20hospital%20emergency%20department&rft.btitle=Proceedings%20of%20the%202012%20Winter%20Simulation%20Conference%20(WSC)&rft.au=Yong-Hong%20Kuo&rft.date=2012-12&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=1467347795&rft.isbn_list=9781467347792&rft_id=info:doi/10.1109/WSC.2012.6465061&rft_dat=%3Cieee_6IE%3E6465061%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467347825&rft.eisbn_list=9781467347815&rft.eisbn_list=1467347817&rft.eisbn_list=1467347809&rft.eisbn_list=9781467347822&rft.eisbn_list=9781467347808&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6465061&rfr_iscdi=true