Simulation with data scarcity: Developing a simulation model of a hospital emergency department
Our research was motivated by the resource allocations problem in the Emergency Department at the Prince of Wales Hospital in Hong Kong. We adopted a simulation approach to analysis how the allocation decisions impact patient's experience in the department. The development of the model is compl...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Yong-Hong Kuo Leung, J. M. Y. Graham, C. A. |
description | Our research was motivated by the resource allocations problem in the Emergency Department at the Prince of Wales Hospital in Hong Kong. We adopted a simulation approach to analysis how the allocation decisions impact patient's experience in the department. The development of the model is complicated by the fact that there are different categories of patients (with different time-varying arrival rates, treatments and procedures), and the data records were incomplete to allow direct estimation of many of the key operational parameters (e.g. the duration of doctor's consultation). To tackle the first issue, patients' arrivals are modelled as Poisson processes with category and time-dependent arrival rates. The second issue is resolved by positing a general distribution (Weibull) for some key processes, and developing meta-heuristic approaches to jointly estimate the distribution parameters. Our computational results show that accurate estimates of the distribution parameters are found using our proposed search procedure, in that the simulated results and the actual data were consistent. |
doi_str_mv | 10.1109/WSC.2012.6465061 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6465061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6465061</ieee_id><sourcerecordid>6465061</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c7de941b332943d7198857491ef7ceb7240dabfd5343cc5b0462881c560b79eb3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUheMLrLV7wU3-wNTcydudtL6g4KKKy5JJ7rSReTETlfn3Fiy6OvCdw7c4hFwBmwMwe_O-XsxzBvlcCSWZgiNyAUJpLrTJ5TGZgJQmE5zJk79CW3lKJsxYyLTm6pzMhuGDMbb3KWv1hGzWsf6sXIptQ79j2tHgkqODd72PabylS_zCqu1is6V7_L-t24AVbcs93bVDF5OrKNbYb7HxIw3YuT7V2KRLcla6asDZIafk7eH-dfGUrV4enxd3qyyClinzOqAVUHCeW8GDBmuM1MICltpjoXPBgivKILng3suCCZUbA14qVmiLBZ-S619vRMRN18fa9ePmcBT_AfcRWOQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Simulation with data scarcity: Developing a simulation model of a hospital emergency department</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yong-Hong Kuo ; Leung, J. M. Y. ; Graham, C. A.</creator><creatorcontrib>Yong-Hong Kuo ; Leung, J. M. Y. ; Graham, C. A.</creatorcontrib><description>Our research was motivated by the resource allocations problem in the Emergency Department at the Prince of Wales Hospital in Hong Kong. We adopted a simulation approach to analysis how the allocation decisions impact patient's experience in the department. The development of the model is complicated by the fact that there are different categories of patients (with different time-varying arrival rates, treatments and procedures), and the data records were incomplete to allow direct estimation of many of the key operational parameters (e.g. the duration of doctor's consultation). To tackle the first issue, patients' arrivals are modelled as Poisson processes with category and time-dependent arrival rates. The second issue is resolved by positing a general distribution (Weibull) for some key processes, and developing meta-heuristic approaches to jointly estimate the distribution parameters. Our computational results show that accurate estimates of the distribution parameters are found using our proposed search procedure, in that the simulated results and the actual data were consistent.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 1467347795</identifier><identifier>ISBN: 9781467347792</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1467347825</identifier><identifier>EISBN: 9781467347815</identifier><identifier>EISBN: 1467347817</identifier><identifier>EISBN: 1467347809</identifier><identifier>EISBN: 9781467347822</identifier><identifier>EISBN: 9781467347808</identifier><identifier>DOI: 10.1109/WSC.2012.6465061</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Data models ; Hospitals ; Search problems</subject><ispartof>Proceedings of the 2012 Winter Simulation Conference (WSC), 2012, p.1-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6465061$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27929,54924</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6465061$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yong-Hong Kuo</creatorcontrib><creatorcontrib>Leung, J. M. Y.</creatorcontrib><creatorcontrib>Graham, C. A.</creatorcontrib><title>Simulation with data scarcity: Developing a simulation model of a hospital emergency department</title><title>Proceedings of the 2012 Winter Simulation Conference (WSC)</title><addtitle>WSC</addtitle><description>Our research was motivated by the resource allocations problem in the Emergency Department at the Prince of Wales Hospital in Hong Kong. We adopted a simulation approach to analysis how the allocation decisions impact patient's experience in the department. The development of the model is complicated by the fact that there are different categories of patients (with different time-varying arrival rates, treatments and procedures), and the data records were incomplete to allow direct estimation of many of the key operational parameters (e.g. the duration of doctor's consultation). To tackle the first issue, patients' arrivals are modelled as Poisson processes with category and time-dependent arrival rates. The second issue is resolved by positing a general distribution (Weibull) for some key processes, and developing meta-heuristic approaches to jointly estimate the distribution parameters. Our computational results show that accurate estimates of the distribution parameters are found using our proposed search procedure, in that the simulated results and the actual data were consistent.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Hospitals</subject><subject>Search problems</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>1467347795</isbn><isbn>9781467347792</isbn><isbn>1467347825</isbn><isbn>9781467347815</isbn><isbn>1467347817</isbn><isbn>1467347809</isbn><isbn>9781467347822</isbn><isbn>9781467347808</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLAzEUheMLrLV7wU3-wNTcydudtL6g4KKKy5JJ7rSReTETlfn3Fiy6OvCdw7c4hFwBmwMwe_O-XsxzBvlcCSWZgiNyAUJpLrTJ5TGZgJQmE5zJk79CW3lKJsxYyLTm6pzMhuGDMbb3KWv1hGzWsf6sXIptQ79j2tHgkqODd72PabylS_zCqu1is6V7_L-t24AVbcs93bVDF5OrKNbYb7HxIw3YuT7V2KRLcla6asDZIafk7eH-dfGUrV4enxd3qyyClinzOqAVUHCeW8GDBmuM1MICltpjoXPBgivKILng3suCCZUbA14qVmiLBZ-S619vRMRN18fa9ePmcBT_AfcRWOQ</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Yong-Hong Kuo</creator><creator>Leung, J. M. Y.</creator><creator>Graham, C. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>Simulation with data scarcity: Developing a simulation model of a hospital emergency department</title><author>Yong-Hong Kuo ; Leung, J. M. Y. ; Graham, C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c7de941b332943d7198857491ef7ceb7240dabfd5343cc5b0462881c560b79eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Hospitals</topic><topic>Search problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Yong-Hong Kuo</creatorcontrib><creatorcontrib>Leung, J. M. Y.</creatorcontrib><creatorcontrib>Graham, C. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yong-Hong Kuo</au><au>Leung, J. M. Y.</au><au>Graham, C. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Simulation with data scarcity: Developing a simulation model of a hospital emergency department</atitle><btitle>Proceedings of the 2012 Winter Simulation Conference (WSC)</btitle><stitle>WSC</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>1467347795</isbn><isbn>9781467347792</isbn><eisbn>1467347825</eisbn><eisbn>9781467347815</eisbn><eisbn>1467347817</eisbn><eisbn>1467347809</eisbn><eisbn>9781467347822</eisbn><eisbn>9781467347808</eisbn><abstract>Our research was motivated by the resource allocations problem in the Emergency Department at the Prince of Wales Hospital in Hong Kong. We adopted a simulation approach to analysis how the allocation decisions impact patient's experience in the department. The development of the model is complicated by the fact that there are different categories of patients (with different time-varying arrival rates, treatments and procedures), and the data records were incomplete to allow direct estimation of many of the key operational parameters (e.g. the duration of doctor's consultation). To tackle the first issue, patients' arrivals are modelled as Poisson processes with category and time-dependent arrival rates. The second issue is resolved by positing a general distribution (Weibull) for some key processes, and developing meta-heuristic approaches to jointly estimate the distribution parameters. Our computational results show that accurate estimates of the distribution parameters are found using our proposed search procedure, in that the simulated results and the actual data were consistent.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2012.6465061</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0891-7736 |
ispartof | Proceedings of the 2012 Winter Simulation Conference (WSC), 2012, p.1-12 |
issn | 0891-7736 1558-4305 |
language | eng |
recordid | cdi_ieee_primary_6465061 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Computational modeling Data models Hospitals Search problems |
title | Simulation with data scarcity: Developing a simulation model of a hospital emergency department |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Simulation%20with%20data%20scarcity:%20Developing%20a%20simulation%20model%20of%20a%20hospital%20emergency%20department&rft.btitle=Proceedings%20of%20the%202012%20Winter%20Simulation%20Conference%20(WSC)&rft.au=Yong-Hong%20Kuo&rft.date=2012-12&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=1467347795&rft.isbn_list=9781467347792&rft_id=info:doi/10.1109/WSC.2012.6465061&rft_dat=%3Cieee_6IE%3E6465061%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467347825&rft.eisbn_list=9781467347815&rft.eisbn_list=1467347817&rft.eisbn_list=1467347809&rft.eisbn_list=9781467347822&rft.eisbn_list=9781467347808&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6465061&rfr_iscdi=true |