Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint

Using the unique ability of graphene to be transferred to virtually any surface, field-effect transistors are demonstrated with vertically stacked graphene channels that are electrically connected in parallel. The graphene in each layer is double gated, with all gates in the stack connected to a com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2013-04, Vol.34 (4), p.556-558
Hauptverfasser: Franklin, A. D., Oida, S., Farmer, D. B., Smith, J. T., Shu-Jen Han, Breslin, C. M., Gignac, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 4
container_start_page 556
container_title IEEE electron device letters
container_volume 34
creator Franklin, A. D.
Oida, S.
Farmer, D. B.
Smith, J. T.
Shu-Jen Han
Breslin, C. M.
Gignac, L.
description Using the unique ability of graphene to be transferred to virtually any surface, field-effect transistors are demonstrated with vertically stacked graphene channels that are electrically connected in parallel. The graphene in each layer is double gated, with all gates in the stack connected to a common gate electrode. We show that the performance of these devices scales linearly with the number of stacked graphene channels at rates of approximately 500 μA/μm and 200 μS/μm per layer for the on-current and peak transconductance, respectively. This demonstration reveals the ability to employ graphene in a novel fashion for tuning and amplifying the performance of a transistor without changing the device footprint.
doi_str_mv 10.1109/LED.2013.2242428
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6461911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6461911</ieee_id><sourcerecordid>27211573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-7b1f8e5568cb79709ff32999c0c4b7c3f121fda2a594b74100a290c26dadaefc3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wUsuHrfOJNnN5ii1rULBQpUelzQ7cVe325LsxX9vSovMYXi8eTPMx9g9wgQRzNNy9jIRgHIihEpVXrAR5nmZQV7ISzYCrTCTCMU1u4nxGwCV0mrENuvBup-2_-KLYA8N9cSnje176iJve76ywXYdddzvA5_1yXFU8xWFpHdHwTft0PChIb62O-Lz_X44hLYfbtmVt12ku3Mfs8_57GP6mi3fF2_T52XmpCiGTG_Rl5TnRem22mgw3kthjHHg1FY76VGgr62wuUlaIYAVBpwoaltb8k6OGZz2urCPMZCv0vmdDb8VQnUEUyUw1RFMdQaTIo-nyMFGZzsf0h9t_M8JLRBzLdPcw2muJaJ_u1AFGkT5B-izbAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint</title><source>IEEE Electronic Library (IEL)</source><creator>Franklin, A. D. ; Oida, S. ; Farmer, D. B. ; Smith, J. T. ; Shu-Jen Han ; Breslin, C. M. ; Gignac, L.</creator><creatorcontrib>Franklin, A. D. ; Oida, S. ; Farmer, D. B. ; Smith, J. T. ; Shu-Jen Han ; Breslin, C. M. ; Gignac, L.</creatorcontrib><description>Using the unique ability of graphene to be transferred to virtually any surface, field-effect transistors are demonstrated with vertically stacked graphene channels that are electrically connected in parallel. The graphene in each layer is double gated, with all gates in the stack connected to a common gate electrode. We show that the performance of these devices scales linearly with the number of stacked graphene channels at rates of approximately 500 μA/μm and 200 μS/μm per layer for the on-current and peak transconductance, respectively. This demonstration reveals the ability to employ graphene in a novel fashion for tuning and amplifying the performance of a transistor without changing the device footprint.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2013.2242428</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Dielectrics ; Double gate ; Electronics ; Exact sciences and technology ; field-effect transistor (FET) ; Graphene ; Logic gates ; parallel channels ; Performance evaluation ; Scanning electron microscopy ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; stacked ; Transconductance ; Transistors</subject><ispartof>IEEE electron device letters, 2013-04, Vol.34 (4), p.556-558</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-7b1f8e5568cb79709ff32999c0c4b7c3f121fda2a594b74100a290c26dadaefc3</citedby><cites>FETCH-LOGICAL-c326t-7b1f8e5568cb79709ff32999c0c4b7c3f121fda2a594b74100a290c26dadaefc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6461911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6461911$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27211573$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Franklin, A. D.</creatorcontrib><creatorcontrib>Oida, S.</creatorcontrib><creatorcontrib>Farmer, D. B.</creatorcontrib><creatorcontrib>Smith, J. T.</creatorcontrib><creatorcontrib>Shu-Jen Han</creatorcontrib><creatorcontrib>Breslin, C. M.</creatorcontrib><creatorcontrib>Gignac, L.</creatorcontrib><title>Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>Using the unique ability of graphene to be transferred to virtually any surface, field-effect transistors are demonstrated with vertically stacked graphene channels that are electrically connected in parallel. The graphene in each layer is double gated, with all gates in the stack connected to a common gate electrode. We show that the performance of these devices scales linearly with the number of stacked graphene channels at rates of approximately 500 μA/μm and 200 μS/μm per layer for the on-current and peak transconductance, respectively. This demonstration reveals the ability to employ graphene in a novel fashion for tuning and amplifying the performance of a transistor without changing the device footprint.</description><subject>Applied sciences</subject><subject>Dielectrics</subject><subject>Double gate</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>field-effect transistor (FET)</subject><subject>Graphene</subject><subject>Logic gates</subject><subject>parallel channels</subject><subject>Performance evaluation</subject><subject>Scanning electron microscopy</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>stacked</subject><subject>Transconductance</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKt3wUsuHrfOJNnN5ii1rULBQpUelzQ7cVe325LsxX9vSovMYXi8eTPMx9g9wgQRzNNy9jIRgHIihEpVXrAR5nmZQV7ISzYCrTCTCMU1u4nxGwCV0mrENuvBup-2_-KLYA8N9cSnje176iJve76ywXYdddzvA5_1yXFU8xWFpHdHwTft0PChIb62O-Lz_X44hLYfbtmVt12ku3Mfs8_57GP6mi3fF2_T52XmpCiGTG_Rl5TnRem22mgw3kthjHHg1FY76VGgr62wuUlaIYAVBpwoaltb8k6OGZz2urCPMZCv0vmdDb8VQnUEUyUw1RFMdQaTIo-nyMFGZzsf0h9t_M8JLRBzLdPcw2muJaJ_u1AFGkT5B-izbAY</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Franklin, A. D.</creator><creator>Oida, S.</creator><creator>Farmer, D. B.</creator><creator>Smith, J. T.</creator><creator>Shu-Jen Han</creator><creator>Breslin, C. M.</creator><creator>Gignac, L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint</title><author>Franklin, A. D. ; Oida, S. ; Farmer, D. B. ; Smith, J. T. ; Shu-Jen Han ; Breslin, C. M. ; Gignac, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-7b1f8e5568cb79709ff32999c0c4b7c3f121fda2a594b74100a290c26dadaefc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Dielectrics</topic><topic>Double gate</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>field-effect transistor (FET)</topic><topic>Graphene</topic><topic>Logic gates</topic><topic>parallel channels</topic><topic>Performance evaluation</topic><topic>Scanning electron microscopy</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>stacked</topic><topic>Transconductance</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franklin, A. D.</creatorcontrib><creatorcontrib>Oida, S.</creatorcontrib><creatorcontrib>Farmer, D. B.</creatorcontrib><creatorcontrib>Smith, J. T.</creatorcontrib><creatorcontrib>Shu-Jen Han</creatorcontrib><creatorcontrib>Breslin, C. M.</creatorcontrib><creatorcontrib>Gignac, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Franklin, A. D.</au><au>Oida, S.</au><au>Farmer, D. B.</au><au>Smith, J. T.</au><au>Shu-Jen Han</au><au>Breslin, C. M.</au><au>Gignac, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>34</volume><issue>4</issue><spage>556</spage><epage>558</epage><pages>556-558</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>Using the unique ability of graphene to be transferred to virtually any surface, field-effect transistors are demonstrated with vertically stacked graphene channels that are electrically connected in parallel. The graphene in each layer is double gated, with all gates in the stack connected to a common gate electrode. We show that the performance of these devices scales linearly with the number of stacked graphene channels at rates of approximately 500 μA/μm and 200 μS/μm per layer for the on-current and peak transconductance, respectively. This demonstration reveals the ability to employ graphene in a novel fashion for tuning and amplifying the performance of a transistor without changing the device footprint.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2013.2242428</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2013-04, Vol.34 (4), p.556-558
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_6461911
source IEEE Electronic Library (IEL)
subjects Applied sciences
Dielectrics
Double gate
Electronics
Exact sciences and technology
field-effect transistor (FET)
Graphene
Logic gates
parallel channels
Performance evaluation
Scanning electron microscopy
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
stacked
Transconductance
Transistors
title Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stacking%20Graphene%20Channels%20in%20Parallel%20for%20Enhanced%20Performance%20With%20the%20Same%20Footprint&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Franklin,%20A.%20D.&rft.date=2013-04-01&rft.volume=34&rft.issue=4&rft.spage=556&rft.epage=558&rft.pages=556-558&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2013.2242428&rft_dat=%3Cpascalfrancis_RIE%3E27211573%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6461911&rfr_iscdi=true