Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint
Using the unique ability of graphene to be transferred to virtually any surface, field-effect transistors are demonstrated with vertically stacked graphene channels that are electrically connected in parallel. The graphene in each layer is double gated, with all gates in the stack connected to a com...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2013-04, Vol.34 (4), p.556-558 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 4 |
container_start_page | 556 |
container_title | IEEE electron device letters |
container_volume | 34 |
creator | Franklin, A. D. Oida, S. Farmer, D. B. Smith, J. T. Shu-Jen Han Breslin, C. M. Gignac, L. |
description | Using the unique ability of graphene to be transferred to virtually any surface, field-effect transistors are demonstrated with vertically stacked graphene channels that are electrically connected in parallel. The graphene in each layer is double gated, with all gates in the stack connected to a common gate electrode. We show that the performance of these devices scales linearly with the number of stacked graphene channels at rates of approximately 500 μA/μm and 200 μS/μm per layer for the on-current and peak transconductance, respectively. This demonstration reveals the ability to employ graphene in a novel fashion for tuning and amplifying the performance of a transistor without changing the device footprint. |
doi_str_mv | 10.1109/LED.2013.2242428 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6461911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6461911</ieee_id><sourcerecordid>27211573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-7b1f8e5568cb79709ff32999c0c4b7c3f121fda2a594b74100a290c26dadaefc3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wUsuHrfOJNnN5ii1rULBQpUelzQ7cVe325LsxX9vSovMYXi8eTPMx9g9wgQRzNNy9jIRgHIihEpVXrAR5nmZQV7ISzYCrTCTCMU1u4nxGwCV0mrENuvBup-2_-KLYA8N9cSnje176iJve76ywXYdddzvA5_1yXFU8xWFpHdHwTft0PChIb62O-Lz_X44hLYfbtmVt12ku3Mfs8_57GP6mi3fF2_T52XmpCiGTG_Rl5TnRem22mgw3kthjHHg1FY76VGgr62wuUlaIYAVBpwoaltb8k6OGZz2urCPMZCv0vmdDb8VQnUEUyUw1RFMdQaTIo-nyMFGZzsf0h9t_M8JLRBzLdPcw2muJaJ_u1AFGkT5B-izbAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint</title><source>IEEE Electronic Library (IEL)</source><creator>Franklin, A. D. ; Oida, S. ; Farmer, D. B. ; Smith, J. T. ; Shu-Jen Han ; Breslin, C. M. ; Gignac, L.</creator><creatorcontrib>Franklin, A. D. ; Oida, S. ; Farmer, D. B. ; Smith, J. T. ; Shu-Jen Han ; Breslin, C. M. ; Gignac, L.</creatorcontrib><description>Using the unique ability of graphene to be transferred to virtually any surface, field-effect transistors are demonstrated with vertically stacked graphene channels that are electrically connected in parallel. The graphene in each layer is double gated, with all gates in the stack connected to a common gate electrode. We show that the performance of these devices scales linearly with the number of stacked graphene channels at rates of approximately 500 μA/μm and 200 μS/μm per layer for the on-current and peak transconductance, respectively. This demonstration reveals the ability to employ graphene in a novel fashion for tuning and amplifying the performance of a transistor without changing the device footprint.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2013.2242428</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Dielectrics ; Double gate ; Electronics ; Exact sciences and technology ; field-effect transistor (FET) ; Graphene ; Logic gates ; parallel channels ; Performance evaluation ; Scanning electron microscopy ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; stacked ; Transconductance ; Transistors</subject><ispartof>IEEE electron device letters, 2013-04, Vol.34 (4), p.556-558</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-7b1f8e5568cb79709ff32999c0c4b7c3f121fda2a594b74100a290c26dadaefc3</citedby><cites>FETCH-LOGICAL-c326t-7b1f8e5568cb79709ff32999c0c4b7c3f121fda2a594b74100a290c26dadaefc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6461911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6461911$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27211573$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Franklin, A. D.</creatorcontrib><creatorcontrib>Oida, S.</creatorcontrib><creatorcontrib>Farmer, D. B.</creatorcontrib><creatorcontrib>Smith, J. T.</creatorcontrib><creatorcontrib>Shu-Jen Han</creatorcontrib><creatorcontrib>Breslin, C. M.</creatorcontrib><creatorcontrib>Gignac, L.</creatorcontrib><title>Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>Using the unique ability of graphene to be transferred to virtually any surface, field-effect transistors are demonstrated with vertically stacked graphene channels that are electrically connected in parallel. The graphene in each layer is double gated, with all gates in the stack connected to a common gate electrode. We show that the performance of these devices scales linearly with the number of stacked graphene channels at rates of approximately 500 μA/μm and 200 μS/μm per layer for the on-current and peak transconductance, respectively. This demonstration reveals the ability to employ graphene in a novel fashion for tuning and amplifying the performance of a transistor without changing the device footprint.</description><subject>Applied sciences</subject><subject>Dielectrics</subject><subject>Double gate</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>field-effect transistor (FET)</subject><subject>Graphene</subject><subject>Logic gates</subject><subject>parallel channels</subject><subject>Performance evaluation</subject><subject>Scanning electron microscopy</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>stacked</subject><subject>Transconductance</subject><subject>Transistors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKt3wUsuHrfOJNnN5ii1rULBQpUelzQ7cVe325LsxX9vSovMYXi8eTPMx9g9wgQRzNNy9jIRgHIihEpVXrAR5nmZQV7ISzYCrTCTCMU1u4nxGwCV0mrENuvBup-2_-KLYA8N9cSnje176iJve76ywXYdddzvA5_1yXFU8xWFpHdHwTft0PChIb62O-Lz_X44hLYfbtmVt12ku3Mfs8_57GP6mi3fF2_T52XmpCiGTG_Rl5TnRem22mgw3kthjHHg1FY76VGgr62wuUlaIYAVBpwoaltb8k6OGZz2urCPMZCv0vmdDb8VQnUEUyUw1RFMdQaTIo-nyMFGZzsf0h9t_M8JLRBzLdPcw2muJaJ_u1AFGkT5B-izbAY</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Franklin, A. D.</creator><creator>Oida, S.</creator><creator>Farmer, D. B.</creator><creator>Smith, J. T.</creator><creator>Shu-Jen Han</creator><creator>Breslin, C. M.</creator><creator>Gignac, L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint</title><author>Franklin, A. D. ; Oida, S. ; Farmer, D. B. ; Smith, J. T. ; Shu-Jen Han ; Breslin, C. M. ; Gignac, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-7b1f8e5568cb79709ff32999c0c4b7c3f121fda2a594b74100a290c26dadaefc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Dielectrics</topic><topic>Double gate</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>field-effect transistor (FET)</topic><topic>Graphene</topic><topic>Logic gates</topic><topic>parallel channels</topic><topic>Performance evaluation</topic><topic>Scanning electron microscopy</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>stacked</topic><topic>Transconductance</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franklin, A. D.</creatorcontrib><creatorcontrib>Oida, S.</creatorcontrib><creatorcontrib>Farmer, D. B.</creatorcontrib><creatorcontrib>Smith, J. T.</creatorcontrib><creatorcontrib>Shu-Jen Han</creatorcontrib><creatorcontrib>Breslin, C. M.</creatorcontrib><creatorcontrib>Gignac, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Franklin, A. D.</au><au>Oida, S.</au><au>Farmer, D. B.</au><au>Smith, J. T.</au><au>Shu-Jen Han</au><au>Breslin, C. M.</au><au>Gignac, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>34</volume><issue>4</issue><spage>556</spage><epage>558</epage><pages>556-558</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>Using the unique ability of graphene to be transferred to virtually any surface, field-effect transistors are demonstrated with vertically stacked graphene channels that are electrically connected in parallel. The graphene in each layer is double gated, with all gates in the stack connected to a common gate electrode. We show that the performance of these devices scales linearly with the number of stacked graphene channels at rates of approximately 500 μA/μm and 200 μS/μm per layer for the on-current and peak transconductance, respectively. This demonstration reveals the ability to employ graphene in a novel fashion for tuning and amplifying the performance of a transistor without changing the device footprint.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2013.2242428</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2013-04, Vol.34 (4), p.556-558 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_6461911 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Dielectrics Double gate Electronics Exact sciences and technology field-effect transistor (FET) Graphene Logic gates parallel channels Performance evaluation Scanning electron microscopy Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices stacked Transconductance Transistors |
title | Stacking Graphene Channels in Parallel for Enhanced Performance With the Same Footprint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stacking%20Graphene%20Channels%20in%20Parallel%20for%20Enhanced%20Performance%20With%20the%20Same%20Footprint&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Franklin,%20A.%20D.&rft.date=2013-04-01&rft.volume=34&rft.issue=4&rft.spage=556&rft.epage=558&rft.pages=556-558&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2013.2242428&rft_dat=%3Cpascalfrancis_RIE%3E27211573%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6461911&rfr_iscdi=true |