Metric learning for graph based semi-supervised human pose estimation

Discriminative approaches to human pose estimation have became popular in recent years. These approaches face a big challenge: Similar inputs might correspond to very dissimilar poses. This property misleads the mapping functions which rely on the Euclidean distances in the input space. In this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pourdamghani, N., Rabiee, H. R., Zolfaghari, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3389
container_issue
container_start_page 3386
container_title
container_volume
creator Pourdamghani, N.
Rabiee, H. R.
Zolfaghari, M.
description Discriminative approaches to human pose estimation have became popular in recent years. These approaches face a big challenge: Similar inputs might correspond to very dissimilar poses. This property misleads the mapping functions which rely on the Euclidean distances in the input space. In this paper, we use the distances between the labels of the training data to learn a metric and map the input data to a space where this problem is minimized. Our mapping is linear and hence preserves the manifold structure of the input data. We benefit from the unlabeled data to estimate this manifold in the new space as a nearest neighbor graph. We finally utilize Tikhonov regularization to find a smooth estimation of the labels over this manifold. Experimental results show the superiority of the proposed method both in the amount of required training data and the performance of labeling.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6460891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460891</ieee_id><sourcerecordid>6460891</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-fc6bbc46828a2b21746a07c4fa7f8b18bbf5619baec6583f978eda53d62596a13</originalsourceid><addsrcrecordid>eNotj8lqAzEQRJUN4jj-glz0AwNqLS3pGIyzgEMuydlI45at4FmQxoH8fZzlVBQP6lFnbOGt094L1BqEP2cz6RQ0Vltz8ctAo1VSAupLNgNhoNFo4Jrd1PohhBTKuBlbvdBUcssPFEqf-x1PQ-G7EsY9j6HSllfqclOPI5XP_NP3xy70fBwqcapT7sKUh_6WXaVwqLT4zzl7f1i9LZ-a9evj8_J-3WSwZmpSizG2Gp10QUYJVmMQttUp2OQiuBiTQfAxUIvGqXQ6Qdtg1Bal8RhAzdnd324mos1YTvrytUGNwnlQ3ydGS2A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Metric learning for graph based semi-supervised human pose estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pourdamghani, N. ; Rabiee, H. R. ; Zolfaghari, M.</creator><creatorcontrib>Pourdamghani, N. ; Rabiee, H. R. ; Zolfaghari, M.</creatorcontrib><description>Discriminative approaches to human pose estimation have became popular in recent years. These approaches face a big challenge: Similar inputs might correspond to very dissimilar poses. This property misleads the mapping functions which rely on the Euclidean distances in the input space. In this paper, we use the distances between the labels of the training data to learn a metric and map the input data to a space where this problem is minimized. Our mapping is linear and hence preserves the manifold structure of the input data. We benefit from the unlabeled data to estimate this manifold in the new space as a nearest neighbor graph. We finally utilize Tikhonov regularization to find a smooth estimation of the labels over this manifold. Experimental results show the superiority of the proposed method both in the amount of required training data and the performance of labeling.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; Humans ; Labeling ; Manifolds ; Measurement ; Pattern recognition ; Training data</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.3386-3389</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460891$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460891$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pourdamghani, N.</creatorcontrib><creatorcontrib>Rabiee, H. R.</creatorcontrib><creatorcontrib>Zolfaghari, M.</creatorcontrib><title>Metric learning for graph based semi-supervised human pose estimation</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>Discriminative approaches to human pose estimation have became popular in recent years. These approaches face a big challenge: Similar inputs might correspond to very dissimilar poses. This property misleads the mapping functions which rely on the Euclidean distances in the input space. In this paper, we use the distances between the labels of the training data to learn a metric and map the input data to a space where this problem is minimized. Our mapping is linear and hence preserves the manifold structure of the input data. We benefit from the unlabeled data to estimate this manifold in the new space as a nearest neighbor graph. We finally utilize Tikhonov regularization to find a smooth estimation of the labels over this manifold. Experimental results show the superiority of the proposed method both in the amount of required training data and the performance of labeling.</description><subject>Estimation</subject><subject>Humans</subject><subject>Labeling</subject><subject>Manifolds</subject><subject>Measurement</subject><subject>Pattern recognition</subject><subject>Training data</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8lqAzEQRJUN4jj-glz0AwNqLS3pGIyzgEMuydlI45at4FmQxoH8fZzlVBQP6lFnbOGt094L1BqEP2cz6RQ0Vltz8ctAo1VSAupLNgNhoNFo4Jrd1PohhBTKuBlbvdBUcssPFEqf-x1PQ-G7EsY9j6HSllfqclOPI5XP_NP3xy70fBwqcapT7sKUh_6WXaVwqLT4zzl7f1i9LZ-a9evj8_J-3WSwZmpSizG2Gp10QUYJVmMQttUp2OQiuBiTQfAxUIvGqXQ6Qdtg1Bal8RhAzdnd324mos1YTvrytUGNwnlQ3ydGS2A</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Pourdamghani, N.</creator><creator>Rabiee, H. R.</creator><creator>Zolfaghari, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Metric learning for graph based semi-supervised human pose estimation</title><author>Pourdamghani, N. ; Rabiee, H. R. ; Zolfaghari, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-fc6bbc46828a2b21746a07c4fa7f8b18bbf5619baec6583f978eda53d62596a13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Estimation</topic><topic>Humans</topic><topic>Labeling</topic><topic>Manifolds</topic><topic>Measurement</topic><topic>Pattern recognition</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Pourdamghani, N.</creatorcontrib><creatorcontrib>Rabiee, H. R.</creatorcontrib><creatorcontrib>Zolfaghari, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pourdamghani, N.</au><au>Rabiee, H. R.</au><au>Zolfaghari, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Metric learning for graph based semi-supervised human pose estimation</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>3386</spage><epage>3389</epage><pages>3386-3389</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>Discriminative approaches to human pose estimation have became popular in recent years. These approaches face a big challenge: Similar inputs might correspond to very dissimilar poses. This property misleads the mapping functions which rely on the Euclidean distances in the input space. In this paper, we use the distances between the labels of the training data to learn a metric and map the input data to a space where this problem is minimized. Our mapping is linear and hence preserves the manifold structure of the input data. We benefit from the unlabeled data to estimate this manifold in the new space as a nearest neighbor graph. We finally utilize Tikhonov regularization to find a smooth estimation of the labels over this manifold. Experimental results show the superiority of the proposed method both in the amount of required training data and the performance of labeling.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.3386-3389
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_6460891
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Estimation
Humans
Labeling
Manifolds
Measurement
Pattern recognition
Training data
title Metric learning for graph based semi-supervised human pose estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Metric%20learning%20for%20graph%20based%20semi-supervised%20human%20pose%20estimation&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Pourdamghani,%20N.&rft.date=2012-11&rft.spage=3386&rft.epage=3389&rft.pages=3386-3389&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6460891%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460891&rfr_iscdi=true