CCTA-based region-wise segmentation

Unsupervised image segmentation is an important and difficult technique in pattern recognition. In this paper, we propose an interesting region merging algorithm for segmentation of natural images. It consists of two steps: first forming initial over-segmentation by the Connected Coherence Tree Algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lingzheng Dai, Junxia Li, Jundi Ding, Jian Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue
container_start_page 238
container_title
container_volume
creator Lingzheng Dai
Junxia Li
Jundi Ding
Jian Yang
description Unsupervised image segmentation is an important and difficult technique in pattern recognition. In this paper, we propose an interesting region merging algorithm for segmentation of natural images. It consists of two steps: first forming initial over-segmentation by the Connected Coherence Tree Algorithm (CCTA), and then merging the primitive regions in terms of their similarity and feature in the spatial domain. Extensive experiments and comparisons are conducted on a wide variety of natural images. Results are good even on these complex images.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6460116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460116</ieee_id><sourcerecordid>6460116</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d981c502121fe227cc94834b8c4cbf0ebe49af066fe0b3728c11003f743ad2713</originalsourceid><addsrcrecordid>eNotjMtKA0EQAMcXuMZ8gZeA54Hunp7XMSy-IOAlnsPMbE9YMVF2FsS_V9RTQRXUiVpGHzhGcMwI8VR1FAxqz96e_TZk5w0ROj5XHYJFzc7ipbpq7RWAwNjQqdu-3651Tk2G1ST78f2oP8cmqyb7gxznNP-Ya3VR01uT5T8X6uX-bts_6s3zw1O_3ugRvZ31EAMWC4SEVYh8KZGD4RwKl1xBsnBMFZyrAtl4CgURwFTPJg3k0SzUzd93FJHdxzQe0vS1c-wA0ZlvoHk9QQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CCTA-based region-wise segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lingzheng Dai ; Junxia Li ; Jundi Ding ; Jian Yang</creator><creatorcontrib>Lingzheng Dai ; Junxia Li ; Jundi Ding ; Jian Yang</creatorcontrib><description>Unsupervised image segmentation is an important and difficult technique in pattern recognition. In this paper, we propose an interesting region merging algorithm for segmentation of natural images. It consists of two steps: first forming initial over-segmentation by the Connected Coherence Tree Algorithm (CCTA), and then merging the primitive regions in terms of their similarity and feature in the spatial domain. Extensive experiments and comparisons are conducted on a wide variety of natural images. Results are good even on these complex images.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image edge detection ; Image segmentation ; Merging ; Nonhomogeneous media ; Pattern recognition ; Semantics</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.238-241</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460116$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lingzheng Dai</creatorcontrib><creatorcontrib>Junxia Li</creatorcontrib><creatorcontrib>Jundi Ding</creatorcontrib><creatorcontrib>Jian Yang</creatorcontrib><title>CCTA-based region-wise segmentation</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>Unsupervised image segmentation is an important and difficult technique in pattern recognition. In this paper, we propose an interesting region merging algorithm for segmentation of natural images. It consists of two steps: first forming initial over-segmentation by the Connected Coherence Tree Algorithm (CCTA), and then merging the primitive regions in terms of their similarity and feature in the spatial domain. Extensive experiments and comparisons are conducted on a wide variety of natural images. Results are good even on these complex images.</description><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Merging</subject><subject>Nonhomogeneous media</subject><subject>Pattern recognition</subject><subject>Semantics</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKA0EQAMcXuMZ8gZeA54Hunp7XMSy-IOAlnsPMbE9YMVF2FsS_V9RTQRXUiVpGHzhGcMwI8VR1FAxqz96e_TZk5w0ROj5XHYJFzc7ipbpq7RWAwNjQqdu-3651Tk2G1ST78f2oP8cmqyb7gxznNP-Ya3VR01uT5T8X6uX-bts_6s3zw1O_3ugRvZ31EAMWC4SEVYh8KZGD4RwKl1xBsnBMFZyrAtl4CgURwFTPJg3k0SzUzd93FJHdxzQe0vS1c-wA0ZlvoHk9QQ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Lingzheng Dai</creator><creator>Junxia Li</creator><creator>Jundi Ding</creator><creator>Jian Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>CCTA-based region-wise segmentation</title><author>Lingzheng Dai ; Junxia Li ; Jundi Ding ; Jian Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d981c502121fe227cc94834b8c4cbf0ebe49af066fe0b3728c11003f743ad2713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Merging</topic><topic>Nonhomogeneous media</topic><topic>Pattern recognition</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Lingzheng Dai</creatorcontrib><creatorcontrib>Junxia Li</creatorcontrib><creatorcontrib>Jundi Ding</creatorcontrib><creatorcontrib>Jian Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lingzheng Dai</au><au>Junxia Li</au><au>Jundi Ding</au><au>Jian Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CCTA-based region-wise segmentation</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>238</spage><epage>241</epage><pages>238-241</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>Unsupervised image segmentation is an important and difficult technique in pattern recognition. In this paper, we propose an interesting region merging algorithm for segmentation of natural images. It consists of two steps: first forming initial over-segmentation by the Connected Coherence Tree Algorithm (CCTA), and then merging the primitive regions in terms of their similarity and feature in the spatial domain. Extensive experiments and comparisons are conducted on a wide variety of natural images. Results are good even on these complex images.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.238-241
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_6460116
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Image edge detection
Image segmentation
Merging
Nonhomogeneous media
Pattern recognition
Semantics
title CCTA-based region-wise segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CCTA-based%20region-wise%20segmentation&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Lingzheng%20Dai&rft.date=2012-11&rft.spage=238&rft.epage=241&rft.pages=238-241&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6460116%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460116&rfr_iscdi=true