CCTA-based region-wise segmentation
Unsupervised image segmentation is an important and difficult technique in pattern recognition. In this paper, we propose an interesting region merging algorithm for segmentation of natural images. It consists of two steps: first forming initial over-segmentation by the Connected Coherence Tree Algo...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | |
container_start_page | 238 |
container_title | |
container_volume | |
creator | Lingzheng Dai Junxia Li Jundi Ding Jian Yang |
description | Unsupervised image segmentation is an important and difficult technique in pattern recognition. In this paper, we propose an interesting region merging algorithm for segmentation of natural images. It consists of two steps: first forming initial over-segmentation by the Connected Coherence Tree Algorithm (CCTA), and then merging the primitive regions in terms of their similarity and feature in the spatial domain. Extensive experiments and comparisons are conducted on a wide variety of natural images. Results are good even on these complex images. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6460116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460116</ieee_id><sourcerecordid>6460116</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d981c502121fe227cc94834b8c4cbf0ebe49af066fe0b3728c11003f743ad2713</originalsourceid><addsrcrecordid>eNotjMtKA0EQAMcXuMZ8gZeA54Hunp7XMSy-IOAlnsPMbE9YMVF2FsS_V9RTQRXUiVpGHzhGcMwI8VR1FAxqz96e_TZk5w0ROj5XHYJFzc7ipbpq7RWAwNjQqdu-3651Tk2G1ST78f2oP8cmqyb7gxznNP-Ya3VR01uT5T8X6uX-bts_6s3zw1O_3ugRvZ31EAMWC4SEVYh8KZGD4RwKl1xBsnBMFZyrAtl4CgURwFTPJg3k0SzUzd93FJHdxzQe0vS1c-wA0ZlvoHk9QQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CCTA-based region-wise segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lingzheng Dai ; Junxia Li ; Jundi Ding ; Jian Yang</creator><creatorcontrib>Lingzheng Dai ; Junxia Li ; Jundi Ding ; Jian Yang</creatorcontrib><description>Unsupervised image segmentation is an important and difficult technique in pattern recognition. In this paper, we propose an interesting region merging algorithm for segmentation of natural images. It consists of two steps: first forming initial over-segmentation by the Connected Coherence Tree Algorithm (CCTA), and then merging the primitive regions in terms of their similarity and feature in the spatial domain. Extensive experiments and comparisons are conducted on a wide variety of natural images. Results are good even on these complex images.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image edge detection ; Image segmentation ; Merging ; Nonhomogeneous media ; Pattern recognition ; Semantics</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.238-241</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460116$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lingzheng Dai</creatorcontrib><creatorcontrib>Junxia Li</creatorcontrib><creatorcontrib>Jundi Ding</creatorcontrib><creatorcontrib>Jian Yang</creatorcontrib><title>CCTA-based region-wise segmentation</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>Unsupervised image segmentation is an important and difficult technique in pattern recognition. In this paper, we propose an interesting region merging algorithm for segmentation of natural images. It consists of two steps: first forming initial over-segmentation by the Connected Coherence Tree Algorithm (CCTA), and then merging the primitive regions in terms of their similarity and feature in the spatial domain. Extensive experiments and comparisons are conducted on a wide variety of natural images. Results are good even on these complex images.</description><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Merging</subject><subject>Nonhomogeneous media</subject><subject>Pattern recognition</subject><subject>Semantics</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKA0EQAMcXuMZ8gZeA54Hunp7XMSy-IOAlnsPMbE9YMVF2FsS_V9RTQRXUiVpGHzhGcMwI8VR1FAxqz96e_TZk5w0ROj5XHYJFzc7ipbpq7RWAwNjQqdu-3651Tk2G1ST78f2oP8cmqyb7gxznNP-Ya3VR01uT5T8X6uX-bts_6s3zw1O_3ugRvZ31EAMWC4SEVYh8KZGD4RwKl1xBsnBMFZyrAtl4CgURwFTPJg3k0SzUzd93FJHdxzQe0vS1c-wA0ZlvoHk9QQ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Lingzheng Dai</creator><creator>Junxia Li</creator><creator>Jundi Ding</creator><creator>Jian Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>CCTA-based region-wise segmentation</title><author>Lingzheng Dai ; Junxia Li ; Jundi Ding ; Jian Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d981c502121fe227cc94834b8c4cbf0ebe49af066fe0b3728c11003f743ad2713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Merging</topic><topic>Nonhomogeneous media</topic><topic>Pattern recognition</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Lingzheng Dai</creatorcontrib><creatorcontrib>Junxia Li</creatorcontrib><creatorcontrib>Jundi Ding</creatorcontrib><creatorcontrib>Jian Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lingzheng Dai</au><au>Junxia Li</au><au>Jundi Ding</au><au>Jian Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CCTA-based region-wise segmentation</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>238</spage><epage>241</epage><pages>238-241</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>Unsupervised image segmentation is an important and difficult technique in pattern recognition. In this paper, we propose an interesting region merging algorithm for segmentation of natural images. It consists of two steps: first forming initial over-segmentation by the Connected Coherence Tree Algorithm (CCTA), and then merging the primitive regions in terms of their similarity and feature in the spatial domain. Extensive experiments and comparisons are conducted on a wide variety of natural images. Results are good even on these complex images.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.238-241 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_6460116 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Image edge detection Image segmentation Merging Nonhomogeneous media Pattern recognition Semantics |
title | CCTA-based region-wise segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CCTA-based%20region-wise%20segmentation&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Lingzheng%20Dai&rft.date=2012-11&rft.spage=238&rft.epage=241&rft.pages=238-241&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6460116%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460116&rfr_iscdi=true |