Automated classification of local patches in colon histopathology
An automated histology analysis is proposed for classification of local image patches of colon histopathology images into four principle classes: normal, cancer, adenomatous and inflamed classes. Shape features based on stroma, lumen and imperfectly segmented nuclei are combined with texture feature...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | |
container_start_page | 61 |
container_title | |
container_volume | |
creator | Kalkan, H. Nap, M. Duin, R. P. W. Loog, M. |
description | An automated histology analysis is proposed for classification of local image patches of colon histopathology images into four principle classes: normal, cancer, adenomatous and inflamed classes. Shape features based on stroma, lumen and imperfectly segmented nuclei are combined with texture features for classification. The classification is analyzed under the three scenarios: normal vs. abnormal, cancer vs. non-cancer and four-class classification on a labeled dataset consisting of 2000 patches per class which were collected from 55 different slices. The proposed method achieves 79.28% mean accuracy between normal and abnormal; 87.67% accuracy between cancer and non-cancer and 75.15% between the four classes with equal class priories. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6460072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460072</ieee_id><sourcerecordid>6460072</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ec8d6b127235fc4d9479091d87bac3be54c70050628d88797055450b45cbce7c3</originalsourceid><addsrcrecordid>eNotjMtqwzAQRdUX1E3zBd3oBwwjaaSRlib0BYFu2nWQZblWcaIQqYv8fU3b1eXcA-eCrR1ZdA4MogB3yRpplWgJSV_9OoGGlJTC4DVrBGjRotHilt2V8gUgQWnbsK77rnnvaxx4mH0paUzB15QPPI98zsHP_OhrmGLh6cBDnhczpVLz8k4LfZ7v2c3o5xLX_7tiH0-P75uXdvv2_Lrptm0SpGsbgx1MLyRJpceAg0Ny4MRgqfdB9VFjIAANRtrBWnIEWqOGHnXoQ6SgVuzhr5tijLvjKe396bwzaACW5g-4Okkt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated classification of local patches in colon histopathology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kalkan, H. ; Nap, M. ; Duin, R. P. W. ; Loog, M.</creator><creatorcontrib>Kalkan, H. ; Nap, M. ; Duin, R. P. W. ; Loog, M.</creatorcontrib><description>An automated histology analysis is proposed for classification of local image patches of colon histopathology images into four principle classes: normal, cancer, adenomatous and inflamed classes. Shape features based on stroma, lumen and imperfectly segmented nuclei are combined with texture features for classification. The classification is analyzed under the three scenarios: normal vs. abnormal, cancer vs. non-cancer and four-class classification on a labeled dataset consisting of 2000 patches per class which were collected from 55 different slices. The proposed method achieves 79.28% mean accuracy between normal and abnormal; 87.67% accuracy between cancer and non-cancer and 75.15% between the four classes with equal class priories.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Cancer ; Colon ; Feature extraction ; Image segmentation ; Pattern recognition ; Shape</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.61-64</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kalkan, H.</creatorcontrib><creatorcontrib>Nap, M.</creatorcontrib><creatorcontrib>Duin, R. P. W.</creatorcontrib><creatorcontrib>Loog, M.</creatorcontrib><title>Automated classification of local patches in colon histopathology</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>An automated histology analysis is proposed for classification of local image patches of colon histopathology images into four principle classes: normal, cancer, adenomatous and inflamed classes. Shape features based on stroma, lumen and imperfectly segmented nuclei are combined with texture features for classification. The classification is analyzed under the three scenarios: normal vs. abnormal, cancer vs. non-cancer and four-class classification on a labeled dataset consisting of 2000 patches per class which were collected from 55 different slices. The proposed method achieves 79.28% mean accuracy between normal and abnormal; 87.67% accuracy between cancer and non-cancer and 75.15% between the four classes with equal class priories.</description><subject>Accuracy</subject><subject>Cancer</subject><subject>Colon</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Pattern recognition</subject><subject>Shape</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtqwzAQRdUX1E3zBd3oBwwjaaSRlib0BYFu2nWQZblWcaIQqYv8fU3b1eXcA-eCrR1ZdA4MogB3yRpplWgJSV_9OoGGlJTC4DVrBGjRotHilt2V8gUgQWnbsK77rnnvaxx4mH0paUzB15QPPI98zsHP_OhrmGLh6cBDnhczpVLz8k4LfZ7v2c3o5xLX_7tiH0-P75uXdvv2_Lrptm0SpGsbgx1MLyRJpceAg0Ny4MRgqfdB9VFjIAANRtrBWnIEWqOGHnXoQ6SgVuzhr5tijLvjKe396bwzaACW5g-4Okkt</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Kalkan, H.</creator><creator>Nap, M.</creator><creator>Duin, R. P. W.</creator><creator>Loog, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Automated classification of local patches in colon histopathology</title><author>Kalkan, H. ; Nap, M. ; Duin, R. P. W. ; Loog, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ec8d6b127235fc4d9479091d87bac3be54c70050628d88797055450b45cbce7c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Cancer</topic><topic>Colon</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Pattern recognition</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Kalkan, H.</creatorcontrib><creatorcontrib>Nap, M.</creatorcontrib><creatorcontrib>Duin, R. P. W.</creatorcontrib><creatorcontrib>Loog, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalkan, H.</au><au>Nap, M.</au><au>Duin, R. P. W.</au><au>Loog, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated classification of local patches in colon histopathology</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>61</spage><epage>64</epage><pages>61-64</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>An automated histology analysis is proposed for classification of local image patches of colon histopathology images into four principle classes: normal, cancer, adenomatous and inflamed classes. Shape features based on stroma, lumen and imperfectly segmented nuclei are combined with texture features for classification. The classification is analyzed under the three scenarios: normal vs. abnormal, cancer vs. non-cancer and four-class classification on a labeled dataset consisting of 2000 patches per class which were collected from 55 different slices. The proposed method achieves 79.28% mean accuracy between normal and abnormal; 87.67% accuracy between cancer and non-cancer and 75.15% between the four classes with equal class priories.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.61-64 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_6460072 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Cancer Colon Feature extraction Image segmentation Pattern recognition Shape |
title | Automated classification of local patches in colon histopathology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20classification%20of%20local%20patches%20in%20colon%20histopathology&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Kalkan,%20H.&rft.date=2012-11&rft.spage=61&rft.epage=64&rft.pages=61-64&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6460072%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460072&rfr_iscdi=true |