Automated classification of local patches in colon histopathology

An automated histology analysis is proposed for classification of local image patches of colon histopathology images into four principle classes: normal, cancer, adenomatous and inflamed classes. Shape features based on stroma, lumen and imperfectly segmented nuclei are combined with texture feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kalkan, H., Nap, M., Duin, R. P. W., Loog, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue
container_start_page 61
container_title
container_volume
creator Kalkan, H.
Nap, M.
Duin, R. P. W.
Loog, M.
description An automated histology analysis is proposed for classification of local image patches of colon histopathology images into four principle classes: normal, cancer, adenomatous and inflamed classes. Shape features based on stroma, lumen and imperfectly segmented nuclei are combined with texture features for classification. The classification is analyzed under the three scenarios: normal vs. abnormal, cancer vs. non-cancer and four-class classification on a labeled dataset consisting of 2000 patches per class which were collected from 55 different slices. The proposed method achieves 79.28% mean accuracy between normal and abnormal; 87.67% accuracy between cancer and non-cancer and 75.15% between the four classes with equal class priories.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6460072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460072</ieee_id><sourcerecordid>6460072</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ec8d6b127235fc4d9479091d87bac3be54c70050628d88797055450b45cbce7c3</originalsourceid><addsrcrecordid>eNotjMtqwzAQRdUX1E3zBd3oBwwjaaSRlib0BYFu2nWQZblWcaIQqYv8fU3b1eXcA-eCrR1ZdA4MogB3yRpplWgJSV_9OoGGlJTC4DVrBGjRotHilt2V8gUgQWnbsK77rnnvaxx4mH0paUzB15QPPI98zsHP_OhrmGLh6cBDnhczpVLz8k4LfZ7v2c3o5xLX_7tiH0-P75uXdvv2_Lrptm0SpGsbgx1MLyRJpceAg0Ny4MRgqfdB9VFjIAANRtrBWnIEWqOGHnXoQ6SgVuzhr5tijLvjKe396bwzaACW5g-4Okkt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated classification of local patches in colon histopathology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kalkan, H. ; Nap, M. ; Duin, R. P. W. ; Loog, M.</creator><creatorcontrib>Kalkan, H. ; Nap, M. ; Duin, R. P. W. ; Loog, M.</creatorcontrib><description>An automated histology analysis is proposed for classification of local image patches of colon histopathology images into four principle classes: normal, cancer, adenomatous and inflamed classes. Shape features based on stroma, lumen and imperfectly segmented nuclei are combined with texture features for classification. The classification is analyzed under the three scenarios: normal vs. abnormal, cancer vs. non-cancer and four-class classification on a labeled dataset consisting of 2000 patches per class which were collected from 55 different slices. The proposed method achieves 79.28% mean accuracy between normal and abnormal; 87.67% accuracy between cancer and non-cancer and 75.15% between the four classes with equal class priories.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Cancer ; Colon ; Feature extraction ; Image segmentation ; Pattern recognition ; Shape</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.61-64</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kalkan, H.</creatorcontrib><creatorcontrib>Nap, M.</creatorcontrib><creatorcontrib>Duin, R. P. W.</creatorcontrib><creatorcontrib>Loog, M.</creatorcontrib><title>Automated classification of local patches in colon histopathology</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>An automated histology analysis is proposed for classification of local image patches of colon histopathology images into four principle classes: normal, cancer, adenomatous and inflamed classes. Shape features based on stroma, lumen and imperfectly segmented nuclei are combined with texture features for classification. The classification is analyzed under the three scenarios: normal vs. abnormal, cancer vs. non-cancer and four-class classification on a labeled dataset consisting of 2000 patches per class which were collected from 55 different slices. The proposed method achieves 79.28% mean accuracy between normal and abnormal; 87.67% accuracy between cancer and non-cancer and 75.15% between the four classes with equal class priories.</description><subject>Accuracy</subject><subject>Cancer</subject><subject>Colon</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Pattern recognition</subject><subject>Shape</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtqwzAQRdUX1E3zBd3oBwwjaaSRlib0BYFu2nWQZblWcaIQqYv8fU3b1eXcA-eCrR1ZdA4MogB3yRpplWgJSV_9OoGGlJTC4DVrBGjRotHilt2V8gUgQWnbsK77rnnvaxx4mH0paUzB15QPPI98zsHP_OhrmGLh6cBDnhczpVLz8k4LfZ7v2c3o5xLX_7tiH0-P75uXdvv2_Lrptm0SpGsbgx1MLyRJpceAg0Ny4MRgqfdB9VFjIAANRtrBWnIEWqOGHnXoQ6SgVuzhr5tijLvjKe396bwzaACW5g-4Okkt</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Kalkan, H.</creator><creator>Nap, M.</creator><creator>Duin, R. P. W.</creator><creator>Loog, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Automated classification of local patches in colon histopathology</title><author>Kalkan, H. ; Nap, M. ; Duin, R. P. W. ; Loog, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ec8d6b127235fc4d9479091d87bac3be54c70050628d88797055450b45cbce7c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Cancer</topic><topic>Colon</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Pattern recognition</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Kalkan, H.</creatorcontrib><creatorcontrib>Nap, M.</creatorcontrib><creatorcontrib>Duin, R. P. W.</creatorcontrib><creatorcontrib>Loog, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalkan, H.</au><au>Nap, M.</au><au>Duin, R. P. W.</au><au>Loog, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated classification of local patches in colon histopathology</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>61</spage><epage>64</epage><pages>61-64</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>An automated histology analysis is proposed for classification of local image patches of colon histopathology images into four principle classes: normal, cancer, adenomatous and inflamed classes. Shape features based on stroma, lumen and imperfectly segmented nuclei are combined with texture features for classification. The classification is analyzed under the three scenarios: normal vs. abnormal, cancer vs. non-cancer and four-class classification on a labeled dataset consisting of 2000 patches per class which were collected from 55 different slices. The proposed method achieves 79.28% mean accuracy between normal and abnormal; 87.67% accuracy between cancer and non-cancer and 75.15% between the four classes with equal class priories.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.61-64
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_6460072
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Cancer
Colon
Feature extraction
Image segmentation
Pattern recognition
Shape
title Automated classification of local patches in colon histopathology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20classification%20of%20local%20patches%20in%20colon%20histopathology&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Kalkan,%20H.&rft.date=2012-11&rft.spage=61&rft.epage=64&rft.pages=61-64&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6460072%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460072&rfr_iscdi=true