Visual Single Cluster of multidimensional data

The rapid development of computer tools allows the computer system to stoke very large amount of data with many parameters such as electronic payment systems, sensors and monitoring systems and other. We talk about large data bases along both dimensions: number of recordings and number of dimensions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khadidja, A., Nadjia, B., Saliha, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Khadidja, A.
Nadjia, B.
Saliha, O.
description The rapid development of computer tools allows the computer system to stoke very large amount of data with many parameters such as electronic payment systems, sensors and monitoring systems and other. We talk about large data bases along both dimensions: number of recordings and number of dimensions "attribute, variable". Analysis of these data becomes very important and difficult in the same time. The visual data analysis has great potential applications because it facilitates the analysis, interpretation, validation and also increases the cognitive aspect among analysts. However, the traditional techniques of visualization of multidimensional data, such as parallel coordinates, glyphs, and scatter plot matrices, do not scale well to a very large data set. The increasing size and complexity of data sets is a new challenge and a key motivation for our works. In this article, we present our proposal approach VSCDR (Visual Single Cluster Dimension Reduction Approach) that can handle with big data.
doi_str_mv 10.1109/ICCSII.2012.6454297
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6454297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6454297</ieee_id><sourcerecordid>6454297</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a3b0f3fac7777eb13b63e22ccb0c55ee6784d0771622ffbcdd9d2f7d4f4ea7323</originalsourceid><addsrcrecordid>eNo1T8lKxEAUbBFBHfMFc8kPJL7eJ0dpXAIDHmbwOvTyWlo6GUknB__egGNdioJaKEK2FFpKoXvsjTn0fcuAslYJKVinr8g9FUpzSaWm16Tq9O5fS35LqlK-AGBNK71Td6T9SGWxuT6k8TNjbfJSZpzqc6yHJc8ppAHHks7jagl2tg_kJtpcsLrwhhxfno_mrdm_v_bmad-kDubGcgeRR-v1CnSUO8WRMe8deCkR12kRQGuqGIvR-RC6wKIOIgq0mjO-Idu_2oSIp-8pDXb6OV0e8l9mRkUO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Visual Single Cluster of multidimensional data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khadidja, A. ; Nadjia, B. ; Saliha, O.</creator><creatorcontrib>Khadidja, A. ; Nadjia, B. ; Saliha, O.</creatorcontrib><description>The rapid development of computer tools allows the computer system to stoke very large amount of data with many parameters such as electronic payment systems, sensors and monitoring systems and other. We talk about large data bases along both dimensions: number of recordings and number of dimensions "attribute, variable". Analysis of these data becomes very important and difficult in the same time. The visual data analysis has great potential applications because it facilitates the analysis, interpretation, validation and also increases the cognitive aspect among analysts. However, the traditional techniques of visualization of multidimensional data, such as parallel coordinates, glyphs, and scatter plot matrices, do not scale well to a very large data set. The increasing size and complexity of data sets is a new challenge and a key motivation for our works. In this article, we present our proposal approach VSCDR (Visual Single Cluster Dimension Reduction Approach) that can handle with big data.</description><identifier>ISBN: 9781467351553</identifier><identifier>ISBN: 1467351555</identifier><identifier>EISBN: 1467351571</identifier><identifier>EISBN: 1467351563</identifier><identifier>EISBN: 9781467351560</identifier><identifier>EISBN: 9781467351577</identifier><identifier>DOI: 10.1109/ICCSII.2012.6454297</identifier><language>eng</language><publisher>IEEE</publisher><subject>big data ; clustering ; Clustering algorithms ; Computers ; Data analysis ; Data mining ; Data visualization ; dimensionality reduction ; Taxonomy ; Visual data mining ; Visualization</subject><ispartof>2012 International Conference on Computer Systems and Industrial Informatics, 2012, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6454297$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6454297$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khadidja, A.</creatorcontrib><creatorcontrib>Nadjia, B.</creatorcontrib><creatorcontrib>Saliha, O.</creatorcontrib><title>Visual Single Cluster of multidimensional data</title><title>2012 International Conference on Computer Systems and Industrial Informatics</title><addtitle>ICCSII</addtitle><description>The rapid development of computer tools allows the computer system to stoke very large amount of data with many parameters such as electronic payment systems, sensors and monitoring systems and other. We talk about large data bases along both dimensions: number of recordings and number of dimensions "attribute, variable". Analysis of these data becomes very important and difficult in the same time. The visual data analysis has great potential applications because it facilitates the analysis, interpretation, validation and also increases the cognitive aspect among analysts. However, the traditional techniques of visualization of multidimensional data, such as parallel coordinates, glyphs, and scatter plot matrices, do not scale well to a very large data set. The increasing size and complexity of data sets is a new challenge and a key motivation for our works. In this article, we present our proposal approach VSCDR (Visual Single Cluster Dimension Reduction Approach) that can handle with big data.</description><subject>big data</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Computers</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>dimensionality reduction</subject><subject>Taxonomy</subject><subject>Visual data mining</subject><subject>Visualization</subject><isbn>9781467351553</isbn><isbn>1467351555</isbn><isbn>1467351571</isbn><isbn>1467351563</isbn><isbn>9781467351560</isbn><isbn>9781467351577</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T8lKxEAUbBFBHfMFc8kPJL7eJ0dpXAIDHmbwOvTyWlo6GUknB__egGNdioJaKEK2FFpKoXvsjTn0fcuAslYJKVinr8g9FUpzSaWm16Tq9O5fS35LqlK-AGBNK71Td6T9SGWxuT6k8TNjbfJSZpzqc6yHJc8ppAHHks7jagl2tg_kJtpcsLrwhhxfno_mrdm_v_bmad-kDubGcgeRR-v1CnSUO8WRMe8deCkR12kRQGuqGIvR-RC6wKIOIgq0mjO-Idu_2oSIp-8pDXb6OV0e8l9mRkUO</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Khadidja, A.</creator><creator>Nadjia, B.</creator><creator>Saliha, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Visual Single Cluster of multidimensional data</title><author>Khadidja, A. ; Nadjia, B. ; Saliha, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a3b0f3fac7777eb13b63e22ccb0c55ee6784d0771622ffbcdd9d2f7d4f4ea7323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>big data</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Computers</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>dimensionality reduction</topic><topic>Taxonomy</topic><topic>Visual data mining</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Khadidja, A.</creatorcontrib><creatorcontrib>Nadjia, B.</creatorcontrib><creatorcontrib>Saliha, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khadidja, A.</au><au>Nadjia, B.</au><au>Saliha, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visual Single Cluster of multidimensional data</atitle><btitle>2012 International Conference on Computer Systems and Industrial Informatics</btitle><stitle>ICCSII</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781467351553</isbn><isbn>1467351555</isbn><eisbn>1467351571</eisbn><eisbn>1467351563</eisbn><eisbn>9781467351560</eisbn><eisbn>9781467351577</eisbn><abstract>The rapid development of computer tools allows the computer system to stoke very large amount of data with many parameters such as electronic payment systems, sensors and monitoring systems and other. We talk about large data bases along both dimensions: number of recordings and number of dimensions "attribute, variable". Analysis of these data becomes very important and difficult in the same time. The visual data analysis has great potential applications because it facilitates the analysis, interpretation, validation and also increases the cognitive aspect among analysts. However, the traditional techniques of visualization of multidimensional data, such as parallel coordinates, glyphs, and scatter plot matrices, do not scale well to a very large data set. The increasing size and complexity of data sets is a new challenge and a key motivation for our works. In this article, we present our proposal approach VSCDR (Visual Single Cluster Dimension Reduction Approach) that can handle with big data.</abstract><pub>IEEE</pub><doi>10.1109/ICCSII.2012.6454297</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467351553
ispartof 2012 International Conference on Computer Systems and Industrial Informatics, 2012, p.1-7
issn
language eng
recordid cdi_ieee_primary_6454297
source IEEE Electronic Library (IEL) Conference Proceedings
subjects big data
clustering
Clustering algorithms
Computers
Data analysis
Data mining
Data visualization
dimensionality reduction
Taxonomy
Visual data mining
Visualization
title Visual Single Cluster of multidimensional data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visual%20Single%20Cluster%20of%20multidimensional%20data&rft.btitle=2012%20International%20Conference%20on%20Computer%20Systems%20and%20Industrial%20Informatics&rft.au=Khadidja,%20A.&rft.date=2012-12&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781467351553&rft.isbn_list=1467351555&rft_id=info:doi/10.1109/ICCSII.2012.6454297&rft_dat=%3Cieee_6IE%3E6454297%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467351571&rft.eisbn_list=1467351563&rft.eisbn_list=9781467351560&rft.eisbn_list=9781467351577&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6454297&rfr_iscdi=true