Visual Single Cluster of multidimensional data
The rapid development of computer tools allows the computer system to stoke very large amount of data with many parameters such as electronic payment systems, sensors and monitoring systems and other. We talk about large data bases along both dimensions: number of recordings and number of dimensions...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Khadidja, A. Nadjia, B. Saliha, O. |
description | The rapid development of computer tools allows the computer system to stoke very large amount of data with many parameters such as electronic payment systems, sensors and monitoring systems and other. We talk about large data bases along both dimensions: number of recordings and number of dimensions "attribute, variable". Analysis of these data becomes very important and difficult in the same time. The visual data analysis has great potential applications because it facilitates the analysis, interpretation, validation and also increases the cognitive aspect among analysts. However, the traditional techniques of visualization of multidimensional data, such as parallel coordinates, glyphs, and scatter plot matrices, do not scale well to a very large data set. The increasing size and complexity of data sets is a new challenge and a key motivation for our works. In this article, we present our proposal approach VSCDR (Visual Single Cluster Dimension Reduction Approach) that can handle with big data. |
doi_str_mv | 10.1109/ICCSII.2012.6454297 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6454297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6454297</ieee_id><sourcerecordid>6454297</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a3b0f3fac7777eb13b63e22ccb0c55ee6784d0771622ffbcdd9d2f7d4f4ea7323</originalsourceid><addsrcrecordid>eNo1T8lKxEAUbBFBHfMFc8kPJL7eJ0dpXAIDHmbwOvTyWlo6GUknB__egGNdioJaKEK2FFpKoXvsjTn0fcuAslYJKVinr8g9FUpzSaWm16Tq9O5fS35LqlK-AGBNK71Td6T9SGWxuT6k8TNjbfJSZpzqc6yHJc8ppAHHks7jagl2tg_kJtpcsLrwhhxfno_mrdm_v_bmad-kDubGcgeRR-v1CnSUO8WRMe8deCkR12kRQGuqGIvR-RC6wKIOIgq0mjO-Idu_2oSIp-8pDXb6OV0e8l9mRkUO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Visual Single Cluster of multidimensional data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khadidja, A. ; Nadjia, B. ; Saliha, O.</creator><creatorcontrib>Khadidja, A. ; Nadjia, B. ; Saliha, O.</creatorcontrib><description>The rapid development of computer tools allows the computer system to stoke very large amount of data with many parameters such as electronic payment systems, sensors and monitoring systems and other. We talk about large data bases along both dimensions: number of recordings and number of dimensions "attribute, variable". Analysis of these data becomes very important and difficult in the same time. The visual data analysis has great potential applications because it facilitates the analysis, interpretation, validation and also increases the cognitive aspect among analysts. However, the traditional techniques of visualization of multidimensional data, such as parallel coordinates, glyphs, and scatter plot matrices, do not scale well to a very large data set. The increasing size and complexity of data sets is a new challenge and a key motivation for our works. In this article, we present our proposal approach VSCDR (Visual Single Cluster Dimension Reduction Approach) that can handle with big data.</description><identifier>ISBN: 9781467351553</identifier><identifier>ISBN: 1467351555</identifier><identifier>EISBN: 1467351571</identifier><identifier>EISBN: 1467351563</identifier><identifier>EISBN: 9781467351560</identifier><identifier>EISBN: 9781467351577</identifier><identifier>DOI: 10.1109/ICCSII.2012.6454297</identifier><language>eng</language><publisher>IEEE</publisher><subject>big data ; clustering ; Clustering algorithms ; Computers ; Data analysis ; Data mining ; Data visualization ; dimensionality reduction ; Taxonomy ; Visual data mining ; Visualization</subject><ispartof>2012 International Conference on Computer Systems and Industrial Informatics, 2012, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6454297$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6454297$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khadidja, A.</creatorcontrib><creatorcontrib>Nadjia, B.</creatorcontrib><creatorcontrib>Saliha, O.</creatorcontrib><title>Visual Single Cluster of multidimensional data</title><title>2012 International Conference on Computer Systems and Industrial Informatics</title><addtitle>ICCSII</addtitle><description>The rapid development of computer tools allows the computer system to stoke very large amount of data with many parameters such as electronic payment systems, sensors and monitoring systems and other. We talk about large data bases along both dimensions: number of recordings and number of dimensions "attribute, variable". Analysis of these data becomes very important and difficult in the same time. The visual data analysis has great potential applications because it facilitates the analysis, interpretation, validation and also increases the cognitive aspect among analysts. However, the traditional techniques of visualization of multidimensional data, such as parallel coordinates, glyphs, and scatter plot matrices, do not scale well to a very large data set. The increasing size and complexity of data sets is a new challenge and a key motivation for our works. In this article, we present our proposal approach VSCDR (Visual Single Cluster Dimension Reduction Approach) that can handle with big data.</description><subject>big data</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Computers</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>dimensionality reduction</subject><subject>Taxonomy</subject><subject>Visual data mining</subject><subject>Visualization</subject><isbn>9781467351553</isbn><isbn>1467351555</isbn><isbn>1467351571</isbn><isbn>1467351563</isbn><isbn>9781467351560</isbn><isbn>9781467351577</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T8lKxEAUbBFBHfMFc8kPJL7eJ0dpXAIDHmbwOvTyWlo6GUknB__egGNdioJaKEK2FFpKoXvsjTn0fcuAslYJKVinr8g9FUpzSaWm16Tq9O5fS35LqlK-AGBNK71Td6T9SGWxuT6k8TNjbfJSZpzqc6yHJc8ppAHHks7jagl2tg_kJtpcsLrwhhxfno_mrdm_v_bmad-kDubGcgeRR-v1CnSUO8WRMe8deCkR12kRQGuqGIvR-RC6wKIOIgq0mjO-Idu_2oSIp-8pDXb6OV0e8l9mRkUO</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Khadidja, A.</creator><creator>Nadjia, B.</creator><creator>Saliha, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Visual Single Cluster of multidimensional data</title><author>Khadidja, A. ; Nadjia, B. ; Saliha, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a3b0f3fac7777eb13b63e22ccb0c55ee6784d0771622ffbcdd9d2f7d4f4ea7323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>big data</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Computers</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>dimensionality reduction</topic><topic>Taxonomy</topic><topic>Visual data mining</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Khadidja, A.</creatorcontrib><creatorcontrib>Nadjia, B.</creatorcontrib><creatorcontrib>Saliha, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khadidja, A.</au><au>Nadjia, B.</au><au>Saliha, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visual Single Cluster of multidimensional data</atitle><btitle>2012 International Conference on Computer Systems and Industrial Informatics</btitle><stitle>ICCSII</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781467351553</isbn><isbn>1467351555</isbn><eisbn>1467351571</eisbn><eisbn>1467351563</eisbn><eisbn>9781467351560</eisbn><eisbn>9781467351577</eisbn><abstract>The rapid development of computer tools allows the computer system to stoke very large amount of data with many parameters such as electronic payment systems, sensors and monitoring systems and other. We talk about large data bases along both dimensions: number of recordings and number of dimensions "attribute, variable". Analysis of these data becomes very important and difficult in the same time. The visual data analysis has great potential applications because it facilitates the analysis, interpretation, validation and also increases the cognitive aspect among analysts. However, the traditional techniques of visualization of multidimensional data, such as parallel coordinates, glyphs, and scatter plot matrices, do not scale well to a very large data set. The increasing size and complexity of data sets is a new challenge and a key motivation for our works. In this article, we present our proposal approach VSCDR (Visual Single Cluster Dimension Reduction Approach) that can handle with big data.</abstract><pub>IEEE</pub><doi>10.1109/ICCSII.2012.6454297</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467351553 |
ispartof | 2012 International Conference on Computer Systems and Industrial Informatics, 2012, p.1-7 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6454297 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | big data clustering Clustering algorithms Computers Data analysis Data mining Data visualization dimensionality reduction Taxonomy Visual data mining Visualization |
title | Visual Single Cluster of multidimensional data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visual%20Single%20Cluster%20of%20multidimensional%20data&rft.btitle=2012%20International%20Conference%20on%20Computer%20Systems%20and%20Industrial%20Informatics&rft.au=Khadidja,%20A.&rft.date=2012-12&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781467351553&rft.isbn_list=1467351555&rft_id=info:doi/10.1109/ICCSII.2012.6454297&rft_dat=%3Cieee_6IE%3E6454297%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467351571&rft.eisbn_list=1467351563&rft.eisbn_list=9781467351560&rft.eisbn_list=9781467351577&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6454297&rfr_iscdi=true |