Transient stability analysis of power system using BCU method and ray technique

In this paper stability analysis of a power system is carried out for three machine systems. The energy function is developed mathematically and potential boundary is formed by using ray method. By forming the fault trajectory, exit point on the boundary is estimated and then taking this exit point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Roy, S. M., Yadav, D. K., Girimaji, S. P., Bhatti, T. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Roy, S. M.
Yadav, D. K.
Girimaji, S. P.
Bhatti, T. S.
description In this paper stability analysis of a power system is carried out for three machine systems. The energy function is developed mathematically and potential boundary is formed by using ray method. By forming the fault trajectory, exit point on the boundary is estimated and then taking this exit point as an initial value, Newton's optimization technique is applied to find the controlling unstable equilibrium point (c.u.e.p). This provides the critical energy for that fault contingency. By this method with the knowledge of fault energy injected into the system during fault, severity is predicted and the critical clearing time is found for safe operation.
doi_str_mv 10.1109/IICPE.2012.6450472
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6450472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6450472</ieee_id><sourcerecordid>6450472</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6c48770a0d9181f4bc1a06899476d0e8225d7a079e04629ae6c486655a4ecf993</originalsourceid><addsrcrecordid>eNpFkMtOwzAURI0AiVL6A7DxD6Tcazt2vISohUiVyqJdV25yQ43yKLErlL8HRCVWo5HOnMUwdo8wRwT7WBT522IuAMVcqxSUERfsFpU2EqyU2eV_QbxiE4EaEola3LBZCB8AIAAQlZqw9WZwXfDURR6i2_vGx5G7zjVj8IH3NT_2XzTwMIZILT8F373z53zLW4qHvvohKz64kUcqD53_PNEdu65dE2h2zinbLheb_DVZrV-K_GmVeDRpTHSpMmPAQWUxw1rtS3SgM2uV0RVQJkRaGQfGEigtrKPfgdZp6hSVtbVyyh7-vJ6IdsfBt24Yd-cz5DehOlCT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Transient stability analysis of power system using BCU method and ray technique</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Roy, S. M. ; Yadav, D. K. ; Girimaji, S. P. ; Bhatti, T. S.</creator><creatorcontrib>Roy, S. M. ; Yadav, D. K. ; Girimaji, S. P. ; Bhatti, T. S.</creatorcontrib><description>In this paper stability analysis of a power system is carried out for three machine systems. The energy function is developed mathematically and potential boundary is formed by using ray method. By forming the fault trajectory, exit point on the boundary is estimated and then taking this exit point as an initial value, Newton's optimization technique is applied to find the controlling unstable equilibrium point (c.u.e.p). This provides the critical energy for that fault contingency. By this method with the knowledge of fault energy injected into the system during fault, severity is predicted and the critical clearing time is found for safe operation.</description><identifier>ISSN: 2160-3162</identifier><identifier>ISBN: 1467309311</identifier><identifier>ISBN: 9781467309318</identifier><identifier>EISBN: 1467309338</identifier><identifier>EISBN: 9781467309332</identifier><identifier>EISBN: 1467309346</identifier><identifier>EISBN: 9781467309349</identifier><identifier>DOI: 10.1109/IICPE.2012.6450472</identifier><language>eng</language><publisher>IEEE</publisher><subject>BCU method ; Mathematical model ; MATLAB ; Newton's optimization ; Numerical stability ; power system internal node model ; Power system stability ; ray method ; Stability analysis ; Trajectory ; Transient analysis ; transient stability analysis</subject><ispartof>2012 IEEE 5th India International Conference on Power Electronics (IICPE), 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6450472$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6450472$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roy, S. M.</creatorcontrib><creatorcontrib>Yadav, D. K.</creatorcontrib><creatorcontrib>Girimaji, S. P.</creatorcontrib><creatorcontrib>Bhatti, T. S.</creatorcontrib><title>Transient stability analysis of power system using BCU method and ray technique</title><title>2012 IEEE 5th India International Conference on Power Electronics (IICPE)</title><addtitle>IICPE</addtitle><description>In this paper stability analysis of a power system is carried out for three machine systems. The energy function is developed mathematically and potential boundary is formed by using ray method. By forming the fault trajectory, exit point on the boundary is estimated and then taking this exit point as an initial value, Newton's optimization technique is applied to find the controlling unstable equilibrium point (c.u.e.p). This provides the critical energy for that fault contingency. By this method with the knowledge of fault energy injected into the system during fault, severity is predicted and the critical clearing time is found for safe operation.</description><subject>BCU method</subject><subject>Mathematical model</subject><subject>MATLAB</subject><subject>Newton's optimization</subject><subject>Numerical stability</subject><subject>power system internal node model</subject><subject>Power system stability</subject><subject>ray method</subject><subject>Stability analysis</subject><subject>Trajectory</subject><subject>Transient analysis</subject><subject>transient stability analysis</subject><issn>2160-3162</issn><isbn>1467309311</isbn><isbn>9781467309318</isbn><isbn>1467309338</isbn><isbn>9781467309332</isbn><isbn>1467309346</isbn><isbn>9781467309349</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAURI0AiVL6A7DxD6Tcazt2vISohUiVyqJdV25yQ43yKLErlL8HRCVWo5HOnMUwdo8wRwT7WBT522IuAMVcqxSUERfsFpU2EqyU2eV_QbxiE4EaEola3LBZCB8AIAAQlZqw9WZwXfDURR6i2_vGx5G7zjVj8IH3NT_2XzTwMIZILT8F373z53zLW4qHvvohKz64kUcqD53_PNEdu65dE2h2zinbLheb_DVZrV-K_GmVeDRpTHSpMmPAQWUxw1rtS3SgM2uV0RVQJkRaGQfGEigtrKPfgdZp6hSVtbVyyh7-vJ6IdsfBt24Yd-cz5DehOlCT</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Roy, S. M.</creator><creator>Yadav, D. K.</creator><creator>Girimaji, S. P.</creator><creator>Bhatti, T. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Transient stability analysis of power system using BCU method and ray technique</title><author>Roy, S. M. ; Yadav, D. K. ; Girimaji, S. P. ; Bhatti, T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6c48770a0d9181f4bc1a06899476d0e8225d7a079e04629ae6c486655a4ecf993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>BCU method</topic><topic>Mathematical model</topic><topic>MATLAB</topic><topic>Newton's optimization</topic><topic>Numerical stability</topic><topic>power system internal node model</topic><topic>Power system stability</topic><topic>ray method</topic><topic>Stability analysis</topic><topic>Trajectory</topic><topic>Transient analysis</topic><topic>transient stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Roy, S. M.</creatorcontrib><creatorcontrib>Yadav, D. K.</creatorcontrib><creatorcontrib>Girimaji, S. P.</creatorcontrib><creatorcontrib>Bhatti, T. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, S. M.</au><au>Yadav, D. K.</au><au>Girimaji, S. P.</au><au>Bhatti, T. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Transient stability analysis of power system using BCU method and ray technique</atitle><btitle>2012 IEEE 5th India International Conference on Power Electronics (IICPE)</btitle><stitle>IICPE</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2160-3162</issn><isbn>1467309311</isbn><isbn>9781467309318</isbn><eisbn>1467309338</eisbn><eisbn>9781467309332</eisbn><eisbn>1467309346</eisbn><eisbn>9781467309349</eisbn><abstract>In this paper stability analysis of a power system is carried out for three machine systems. The energy function is developed mathematically and potential boundary is formed by using ray method. By forming the fault trajectory, exit point on the boundary is estimated and then taking this exit point as an initial value, Newton's optimization technique is applied to find the controlling unstable equilibrium point (c.u.e.p). This provides the critical energy for that fault contingency. By this method with the knowledge of fault energy injected into the system during fault, severity is predicted and the critical clearing time is found for safe operation.</abstract><pub>IEEE</pub><doi>10.1109/IICPE.2012.6450472</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-3162
ispartof 2012 IEEE 5th India International Conference on Power Electronics (IICPE), 2012, p.1-5
issn 2160-3162
language eng
recordid cdi_ieee_primary_6450472
source IEEE Electronic Library (IEL) Conference Proceedings
subjects BCU method
Mathematical model
MATLAB
Newton's optimization
Numerical stability
power system internal node model
Power system stability
ray method
Stability analysis
Trajectory
Transient analysis
transient stability analysis
title Transient stability analysis of power system using BCU method and ray technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Transient%20stability%20analysis%20of%20power%20system%20using%20BCU%20method%20and%20ray%20technique&rft.btitle=2012%20IEEE%205th%20India%20International%20Conference%20on%20Power%20Electronics%20(IICPE)&rft.au=Roy,%20S.%20M.&rft.date=2012-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2160-3162&rft.isbn=1467309311&rft.isbn_list=9781467309318&rft_id=info:doi/10.1109/IICPE.2012.6450472&rft_dat=%3Cieee_6IE%3E6450472%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467309338&rft.eisbn_list=9781467309332&rft.eisbn_list=1467309346&rft.eisbn_list=9781467309349&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6450472&rfr_iscdi=true