Transient stability analysis of power system using BCU method and ray technique
In this paper stability analysis of a power system is carried out for three machine systems. The energy function is developed mathematically and potential boundary is formed by using ray method. By forming the fault trajectory, exit point on the boundary is estimated and then taking this exit point...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Roy, S. M. Yadav, D. K. Girimaji, S. P. Bhatti, T. S. |
description | In this paper stability analysis of a power system is carried out for three machine systems. The energy function is developed mathematically and potential boundary is formed by using ray method. By forming the fault trajectory, exit point on the boundary is estimated and then taking this exit point as an initial value, Newton's optimization technique is applied to find the controlling unstable equilibrium point (c.u.e.p). This provides the critical energy for that fault contingency. By this method with the knowledge of fault energy injected into the system during fault, severity is predicted and the critical clearing time is found for safe operation. |
doi_str_mv | 10.1109/IICPE.2012.6450472 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6450472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6450472</ieee_id><sourcerecordid>6450472</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6c48770a0d9181f4bc1a06899476d0e8225d7a079e04629ae6c486655a4ecf993</originalsourceid><addsrcrecordid>eNpFkMtOwzAURI0AiVL6A7DxD6Tcazt2vISohUiVyqJdV25yQ43yKLErlL8HRCVWo5HOnMUwdo8wRwT7WBT522IuAMVcqxSUERfsFpU2EqyU2eV_QbxiE4EaEola3LBZCB8AIAAQlZqw9WZwXfDURR6i2_vGx5G7zjVj8IH3NT_2XzTwMIZILT8F373z53zLW4qHvvohKz64kUcqD53_PNEdu65dE2h2zinbLheb_DVZrV-K_GmVeDRpTHSpMmPAQWUxw1rtS3SgM2uV0RVQJkRaGQfGEigtrKPfgdZp6hSVtbVyyh7-vJ6IdsfBt24Yd-cz5DehOlCT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Transient stability analysis of power system using BCU method and ray technique</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Roy, S. M. ; Yadav, D. K. ; Girimaji, S. P. ; Bhatti, T. S.</creator><creatorcontrib>Roy, S. M. ; Yadav, D. K. ; Girimaji, S. P. ; Bhatti, T. S.</creatorcontrib><description>In this paper stability analysis of a power system is carried out for three machine systems. The energy function is developed mathematically and potential boundary is formed by using ray method. By forming the fault trajectory, exit point on the boundary is estimated and then taking this exit point as an initial value, Newton's optimization technique is applied to find the controlling unstable equilibrium point (c.u.e.p). This provides the critical energy for that fault contingency. By this method with the knowledge of fault energy injected into the system during fault, severity is predicted and the critical clearing time is found for safe operation.</description><identifier>ISSN: 2160-3162</identifier><identifier>ISBN: 1467309311</identifier><identifier>ISBN: 9781467309318</identifier><identifier>EISBN: 1467309338</identifier><identifier>EISBN: 9781467309332</identifier><identifier>EISBN: 1467309346</identifier><identifier>EISBN: 9781467309349</identifier><identifier>DOI: 10.1109/IICPE.2012.6450472</identifier><language>eng</language><publisher>IEEE</publisher><subject>BCU method ; Mathematical model ; MATLAB ; Newton's optimization ; Numerical stability ; power system internal node model ; Power system stability ; ray method ; Stability analysis ; Trajectory ; Transient analysis ; transient stability analysis</subject><ispartof>2012 IEEE 5th India International Conference on Power Electronics (IICPE), 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6450472$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6450472$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roy, S. M.</creatorcontrib><creatorcontrib>Yadav, D. K.</creatorcontrib><creatorcontrib>Girimaji, S. P.</creatorcontrib><creatorcontrib>Bhatti, T. S.</creatorcontrib><title>Transient stability analysis of power system using BCU method and ray technique</title><title>2012 IEEE 5th India International Conference on Power Electronics (IICPE)</title><addtitle>IICPE</addtitle><description>In this paper stability analysis of a power system is carried out for three machine systems. The energy function is developed mathematically and potential boundary is formed by using ray method. By forming the fault trajectory, exit point on the boundary is estimated and then taking this exit point as an initial value, Newton's optimization technique is applied to find the controlling unstable equilibrium point (c.u.e.p). This provides the critical energy for that fault contingency. By this method with the knowledge of fault energy injected into the system during fault, severity is predicted and the critical clearing time is found for safe operation.</description><subject>BCU method</subject><subject>Mathematical model</subject><subject>MATLAB</subject><subject>Newton's optimization</subject><subject>Numerical stability</subject><subject>power system internal node model</subject><subject>Power system stability</subject><subject>ray method</subject><subject>Stability analysis</subject><subject>Trajectory</subject><subject>Transient analysis</subject><subject>transient stability analysis</subject><issn>2160-3162</issn><isbn>1467309311</isbn><isbn>9781467309318</isbn><isbn>1467309338</isbn><isbn>9781467309332</isbn><isbn>1467309346</isbn><isbn>9781467309349</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAURI0AiVL6A7DxD6Tcazt2vISohUiVyqJdV25yQ43yKLErlL8HRCVWo5HOnMUwdo8wRwT7WBT522IuAMVcqxSUERfsFpU2EqyU2eV_QbxiE4EaEola3LBZCB8AIAAQlZqw9WZwXfDURR6i2_vGx5G7zjVj8IH3NT_2XzTwMIZILT8F373z53zLW4qHvvohKz64kUcqD53_PNEdu65dE2h2zinbLheb_DVZrV-K_GmVeDRpTHSpMmPAQWUxw1rtS3SgM2uV0RVQJkRaGQfGEigtrKPfgdZp6hSVtbVyyh7-vJ6IdsfBt24Yd-cz5DehOlCT</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Roy, S. M.</creator><creator>Yadav, D. K.</creator><creator>Girimaji, S. P.</creator><creator>Bhatti, T. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Transient stability analysis of power system using BCU method and ray technique</title><author>Roy, S. M. ; Yadav, D. K. ; Girimaji, S. P. ; Bhatti, T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6c48770a0d9181f4bc1a06899476d0e8225d7a079e04629ae6c486655a4ecf993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>BCU method</topic><topic>Mathematical model</topic><topic>MATLAB</topic><topic>Newton's optimization</topic><topic>Numerical stability</topic><topic>power system internal node model</topic><topic>Power system stability</topic><topic>ray method</topic><topic>Stability analysis</topic><topic>Trajectory</topic><topic>Transient analysis</topic><topic>transient stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Roy, S. M.</creatorcontrib><creatorcontrib>Yadav, D. K.</creatorcontrib><creatorcontrib>Girimaji, S. P.</creatorcontrib><creatorcontrib>Bhatti, T. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, S. M.</au><au>Yadav, D. K.</au><au>Girimaji, S. P.</au><au>Bhatti, T. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Transient stability analysis of power system using BCU method and ray technique</atitle><btitle>2012 IEEE 5th India International Conference on Power Electronics (IICPE)</btitle><stitle>IICPE</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2160-3162</issn><isbn>1467309311</isbn><isbn>9781467309318</isbn><eisbn>1467309338</eisbn><eisbn>9781467309332</eisbn><eisbn>1467309346</eisbn><eisbn>9781467309349</eisbn><abstract>In this paper stability analysis of a power system is carried out for three machine systems. The energy function is developed mathematically and potential boundary is formed by using ray method. By forming the fault trajectory, exit point on the boundary is estimated and then taking this exit point as an initial value, Newton's optimization technique is applied to find the controlling unstable equilibrium point (c.u.e.p). This provides the critical energy for that fault contingency. By this method with the knowledge of fault energy injected into the system during fault, severity is predicted and the critical clearing time is found for safe operation.</abstract><pub>IEEE</pub><doi>10.1109/IICPE.2012.6450472</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-3162 |
ispartof | 2012 IEEE 5th India International Conference on Power Electronics (IICPE), 2012, p.1-5 |
issn | 2160-3162 |
language | eng |
recordid | cdi_ieee_primary_6450472 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | BCU method Mathematical model MATLAB Newton's optimization Numerical stability power system internal node model Power system stability ray method Stability analysis Trajectory Transient analysis transient stability analysis |
title | Transient stability analysis of power system using BCU method and ray technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Transient%20stability%20analysis%20of%20power%20system%20using%20BCU%20method%20and%20ray%20technique&rft.btitle=2012%20IEEE%205th%20India%20International%20Conference%20on%20Power%20Electronics%20(IICPE)&rft.au=Roy,%20S.%20M.&rft.date=2012-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2160-3162&rft.isbn=1467309311&rft.isbn_list=9781467309318&rft_id=info:doi/10.1109/IICPE.2012.6450472&rft_dat=%3Cieee_6IE%3E6450472%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467309338&rft.eisbn_list=9781467309332&rft.eisbn_list=1467309346&rft.eisbn_list=9781467309349&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6450472&rfr_iscdi=true |