Semantic modeling of natural scenes by local binary pattern
Automatic image annotation is an efficient and promising solution in content based image retrieval system applications to process very large databases via keywords. The basic idea of semantic modeling is to describe local image regions into semantic concepts using low level features such as color an...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | |
container_start_page | 169 |
container_title | |
container_volume | |
creator | Raja, R. Md Mansoor Roomi, S. Kalaiyarasi, D. |
description | Automatic image annotation is an efficient and promising solution in content based image retrieval system applications to process very large databases via keywords. The basic idea of semantic modeling is to describe local image regions into semantic concepts using low level features such as color and texture. These local image region descriptions are combined to a global image representation that can be used for scene categorization and retrieval. In this paper, Local Binary Pattern features and neighborhood prior information are used as texture and spatial features for local image representation that allows access to natural scenes. K-Means classifier has been used to support automatic image annotation of local image region into semantic classes such as water, sky, and trees. Extensive experiments on databases like COREL, shows that the proposed technique performs well in scene classification. |
doi_str_mv | 10.1109/MVIP.2012.6428787 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6428787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6428787</ieee_id><sourcerecordid>6428787</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-69c927ed6db7bcb30320a9fee505866108b024f4d9e67c3ffba19e4a572d2ba93</originalsourceid><addsrcrecordid>eNpNj81KxDAUhSMiKGMfQNzkBVpvbtKkwZUM_gyMKDi4HZL0RiJtOrR1MW9vwVm4OnyL83EOYzcCKiHA3r1-bt4rBIGVVtiYxpyxwppGKG0kShT1-X8WFi9ZMU3fALDUtVT1Fbv_oN7lOQXeDy11KX_xIfLs5p_RdXwKlGni_si7ISzsU3bjkR_cPNOYr9lFdN1ExSlXbPf0uFu_lNu35836YVsmC3OpbbBoqNWtNz54CRLB2UhUQ91oLaDxgCqq1pI2QcbonbCkXG2wRe-sXLHbP20iov1hTP2yYX96LH8BnihJcQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semantic modeling of natural scenes by local binary pattern</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Raja, R. ; Md Mansoor Roomi, S. ; Kalaiyarasi, D.</creator><creatorcontrib>Raja, R. ; Md Mansoor Roomi, S. ; Kalaiyarasi, D.</creatorcontrib><description>Automatic image annotation is an efficient and promising solution in content based image retrieval system applications to process very large databases via keywords. The basic idea of semantic modeling is to describe local image regions into semantic concepts using low level features such as color and texture. These local image region descriptions are combined to a global image representation that can be used for scene categorization and retrieval. In this paper, Local Binary Pattern features and neighborhood prior information are used as texture and spatial features for local image representation that allows access to natural scenes. K-Means classifier has been used to support automatic image annotation of local image region into semantic classes such as water, sky, and trees. Extensive experiments on databases like COREL, shows that the proposed technique performs well in scene classification.</description><identifier>ISBN: 9781467323192</identifier><identifier>ISBN: 1467323195</identifier><identifier>EISBN: 9781467323215</identifier><identifier>EISBN: 1467323217</identifier><identifier>EISBN: 9781467323222</identifier><identifier>EISBN: 1467323225</identifier><identifier>DOI: 10.1109/MVIP.2012.6428787</identifier><language>eng</language><publisher>IEEE</publisher><subject>Color Model ; Content Based Image retrieval ; Histograms ; Image color analysis ; Image retrieval ; K means ; Prototypes ; Rocks ; Semantic Modeling ; Semantics</subject><ispartof>2012 International Conference on Machine Vision and Image Processing (MVIP), 2012, p.169-172</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6428787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6428787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raja, R.</creatorcontrib><creatorcontrib>Md Mansoor Roomi, S.</creatorcontrib><creatorcontrib>Kalaiyarasi, D.</creatorcontrib><title>Semantic modeling of natural scenes by local binary pattern</title><title>2012 International Conference on Machine Vision and Image Processing (MVIP)</title><addtitle>MVIP</addtitle><description>Automatic image annotation is an efficient and promising solution in content based image retrieval system applications to process very large databases via keywords. The basic idea of semantic modeling is to describe local image regions into semantic concepts using low level features such as color and texture. These local image region descriptions are combined to a global image representation that can be used for scene categorization and retrieval. In this paper, Local Binary Pattern features and neighborhood prior information are used as texture and spatial features for local image representation that allows access to natural scenes. K-Means classifier has been used to support automatic image annotation of local image region into semantic classes such as water, sky, and trees. Extensive experiments on databases like COREL, shows that the proposed technique performs well in scene classification.</description><subject>Color Model</subject><subject>Content Based Image retrieval</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Image retrieval</subject><subject>K means</subject><subject>Prototypes</subject><subject>Rocks</subject><subject>Semantic Modeling</subject><subject>Semantics</subject><isbn>9781467323192</isbn><isbn>1467323195</isbn><isbn>9781467323215</isbn><isbn>1467323217</isbn><isbn>9781467323222</isbn><isbn>1467323225</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNj81KxDAUhSMiKGMfQNzkBVpvbtKkwZUM_gyMKDi4HZL0RiJtOrR1MW9vwVm4OnyL83EOYzcCKiHA3r1-bt4rBIGVVtiYxpyxwppGKG0kShT1-X8WFi9ZMU3fALDUtVT1Fbv_oN7lOQXeDy11KX_xIfLs5p_RdXwKlGni_si7ISzsU3bjkR_cPNOYr9lFdN1ExSlXbPf0uFu_lNu35836YVsmC3OpbbBoqNWtNz54CRLB2UhUQ91oLaDxgCqq1pI2QcbonbCkXG2wRe-sXLHbP20iov1hTP2yYX96LH8BnihJcQ</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Raja, R.</creator><creator>Md Mansoor Roomi, S.</creator><creator>Kalaiyarasi, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Semantic modeling of natural scenes by local binary pattern</title><author>Raja, R. ; Md Mansoor Roomi, S. ; Kalaiyarasi, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-69c927ed6db7bcb30320a9fee505866108b024f4d9e67c3ffba19e4a572d2ba93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Color Model</topic><topic>Content Based Image retrieval</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Image retrieval</topic><topic>K means</topic><topic>Prototypes</topic><topic>Rocks</topic><topic>Semantic Modeling</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Raja, R.</creatorcontrib><creatorcontrib>Md Mansoor Roomi, S.</creatorcontrib><creatorcontrib>Kalaiyarasi, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raja, R.</au><au>Md Mansoor Roomi, S.</au><au>Kalaiyarasi, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semantic modeling of natural scenes by local binary pattern</atitle><btitle>2012 International Conference on Machine Vision and Image Processing (MVIP)</btitle><stitle>MVIP</stitle><date>2012-12</date><risdate>2012</risdate><spage>169</spage><epage>172</epage><pages>169-172</pages><isbn>9781467323192</isbn><isbn>1467323195</isbn><eisbn>9781467323215</eisbn><eisbn>1467323217</eisbn><eisbn>9781467323222</eisbn><eisbn>1467323225</eisbn><abstract>Automatic image annotation is an efficient and promising solution in content based image retrieval system applications to process very large databases via keywords. The basic idea of semantic modeling is to describe local image regions into semantic concepts using low level features such as color and texture. These local image region descriptions are combined to a global image representation that can be used for scene categorization and retrieval. In this paper, Local Binary Pattern features and neighborhood prior information are used as texture and spatial features for local image representation that allows access to natural scenes. K-Means classifier has been used to support automatic image annotation of local image region into semantic classes such as water, sky, and trees. Extensive experiments on databases like COREL, shows that the proposed technique performs well in scene classification.</abstract><pub>IEEE</pub><doi>10.1109/MVIP.2012.6428787</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467323192 |
ispartof | 2012 International Conference on Machine Vision and Image Processing (MVIP), 2012, p.169-172 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6428787 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Color Model Content Based Image retrieval Histograms Image color analysis Image retrieval K means Prototypes Rocks Semantic Modeling Semantics |
title | Semantic modeling of natural scenes by local binary pattern |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semantic%20modeling%20of%20natural%20scenes%20by%20local%20binary%20pattern&rft.btitle=2012%20International%20Conference%20on%20Machine%20Vision%20and%20Image%20Processing%20(MVIP)&rft.au=Raja,%20R.&rft.date=2012-12&rft.spage=169&rft.epage=172&rft.pages=169-172&rft.isbn=9781467323192&rft.isbn_list=1467323195&rft_id=info:doi/10.1109/MVIP.2012.6428787&rft_dat=%3Cieee_6IE%3E6428787%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467323215&rft.eisbn_list=1467323217&rft.eisbn_list=9781467323222&rft.eisbn_list=1467323225&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6428787&rfr_iscdi=true |