Using economic Model Predictive Control to design sustainable policies for mitigating climate change
Reducing greenhouse gas emissions is now an important and pressing matter. Systems control theory, and in particular feedback control, can contribute to the design of policies that achieve sustainable levels of emissions of CO 2 (and other greenhouse gases) while minimizing the impact on the economy...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 411 |
---|---|
container_issue | |
container_start_page | 406 |
container_title | |
container_volume | |
creator | Bing Chu Duncan, S. Papachristodoulou, A. Hepburn, C. |
description | Reducing greenhouse gas emissions is now an important and pressing matter. Systems control theory, and in particular feedback control, can contribute to the design of policies that achieve sustainable levels of emissions of CO 2 (and other greenhouse gases) while minimizing the impact on the economy, and at the same time explicitly addressing the high levels of uncertainty associated with predictions of future emissions. In this paper, preliminary results are described for an approach where economic Model Predictive Control (MPC) is applied to a Regional dynamic Integrated model of Climate and the Economy (RICE model) as a test bed to design savings rates and global carbon tax for greenhouse gas emissions. Using feedback control, the policies are updated on the basis of the observed emissions, rather than on the predicted level of emissions. The basic structure and principle of the RICE model is firstly introduced and some key equations are described. The idea of introducing feedback control is then explained and economic MPC is applied to design policies for CO 2 emissions. Simulation results are presented to demonstrate the effectiveness of the proposed method for two different scenarios. Feedback control design provides a degree of robustness against disturbances and model uncertainties, which is illustrated through a simulation study with two particular types of uncertainties. The results obtained in this paper illustrate the strength of the proposed design approach and form the basis for future research on using systems control theory to design optimal sustainable policies. |
doi_str_mv | 10.1109/CDC.2012.6426649 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6426649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6426649</ieee_id><sourcerecordid>6426649</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-69b23d7779869dba2f0321e98283709c2798a23c08ecf963400f4bb29984855b3</originalsourceid><addsrcrecordid>eNo1kMFKAzEURSMq2NbuBTf5gakvL2kmWcpoVajowq5LJvNmjEwnZRIF_96KdXU5XDhcLmNXAhZCgL2p7qoFgsCFVqi1sidsKpQuJYKW8pTNbWn-eWnO2ASEFQWi0BdsmtIHABjQesKaTQpDx8nHIe6C58-xoZ6_jtQEn8MX8SoOeYw9z5E3lEI38PSZsguDq3vi-9gHHyjxNo58F3LoXP71-T7sXCbu393Q0SU7b12faH7MGdus7t-qx2L98vBU3a6LgErkQtsaZVOWpTXaNrXDFiQKsgaNLMF6PBQOpQdDvrVaKoBW1TVaa5RZLms5Y9d_3kBE2_142DB-b48PyR8pzVfY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using economic Model Predictive Control to design sustainable policies for mitigating climate change</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bing Chu ; Duncan, S. ; Papachristodoulou, A. ; Hepburn, C.</creator><creatorcontrib>Bing Chu ; Duncan, S. ; Papachristodoulou, A. ; Hepburn, C.</creatorcontrib><description>Reducing greenhouse gas emissions is now an important and pressing matter. Systems control theory, and in particular feedback control, can contribute to the design of policies that achieve sustainable levels of emissions of CO 2 (and other greenhouse gases) while minimizing the impact on the economy, and at the same time explicitly addressing the high levels of uncertainty associated with predictions of future emissions. In this paper, preliminary results are described for an approach where economic Model Predictive Control (MPC) is applied to a Regional dynamic Integrated model of Climate and the Economy (RICE model) as a test bed to design savings rates and global carbon tax for greenhouse gas emissions. Using feedback control, the policies are updated on the basis of the observed emissions, rather than on the predicted level of emissions. The basic structure and principle of the RICE model is firstly introduced and some key equations are described. The idea of introducing feedback control is then explained and economic MPC is applied to design policies for CO 2 emissions. Simulation results are presented to demonstrate the effectiveness of the proposed method for two different scenarios. Feedback control design provides a degree of robustness against disturbances and model uncertainties, which is illustrated through a simulation study with two particular types of uncertainties. The results obtained in this paper illustrate the strength of the proposed design approach and form the basis for future research on using systems control theory to design optimal sustainable policies.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781467320658</identifier><identifier>ISBN: 146732065X</identifier><identifier>EISBN: 1467320633</identifier><identifier>EISBN: 1467320668</identifier><identifier>EISBN: 9781467320634</identifier><identifier>EISBN: 9781467320665</identifier><identifier>EISBN: 9781467320641</identifier><identifier>EISBN: 1467320641</identifier><identifier>DOI: 10.1109/CDC.2012.6426649</identifier><language>eng</language><publisher>IEEE</publisher><subject>Carbon tax ; Feedback control ; Mathematical model ; Meteorology ; Ocean temperature ; Uncertainty</subject><ispartof>2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.406-411</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6426649$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6426649$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bing Chu</creatorcontrib><creatorcontrib>Duncan, S.</creatorcontrib><creatorcontrib>Papachristodoulou, A.</creatorcontrib><creatorcontrib>Hepburn, C.</creatorcontrib><title>Using economic Model Predictive Control to design sustainable policies for mitigating climate change</title><title>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>Reducing greenhouse gas emissions is now an important and pressing matter. Systems control theory, and in particular feedback control, can contribute to the design of policies that achieve sustainable levels of emissions of CO 2 (and other greenhouse gases) while minimizing the impact on the economy, and at the same time explicitly addressing the high levels of uncertainty associated with predictions of future emissions. In this paper, preliminary results are described for an approach where economic Model Predictive Control (MPC) is applied to a Regional dynamic Integrated model of Climate and the Economy (RICE model) as a test bed to design savings rates and global carbon tax for greenhouse gas emissions. Using feedback control, the policies are updated on the basis of the observed emissions, rather than on the predicted level of emissions. The basic structure and principle of the RICE model is firstly introduced and some key equations are described. The idea of introducing feedback control is then explained and economic MPC is applied to design policies for CO 2 emissions. Simulation results are presented to demonstrate the effectiveness of the proposed method for two different scenarios. Feedback control design provides a degree of robustness against disturbances and model uncertainties, which is illustrated through a simulation study with two particular types of uncertainties. The results obtained in this paper illustrate the strength of the proposed design approach and form the basis for future research on using systems control theory to design optimal sustainable policies.</description><subject>Carbon tax</subject><subject>Feedback control</subject><subject>Mathematical model</subject><subject>Meteorology</subject><subject>Ocean temperature</subject><subject>Uncertainty</subject><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><isbn>1467320633</isbn><isbn>1467320668</isbn><isbn>9781467320634</isbn><isbn>9781467320665</isbn><isbn>9781467320641</isbn><isbn>1467320641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMFKAzEURSMq2NbuBTf5gakvL2kmWcpoVajowq5LJvNmjEwnZRIF_96KdXU5XDhcLmNXAhZCgL2p7qoFgsCFVqi1sidsKpQuJYKW8pTNbWn-eWnO2ASEFQWi0BdsmtIHABjQesKaTQpDx8nHIe6C58-xoZ6_jtQEn8MX8SoOeYw9z5E3lEI38PSZsguDq3vi-9gHHyjxNo58F3LoXP71-T7sXCbu393Q0SU7b12faH7MGdus7t-qx2L98vBU3a6LgErkQtsaZVOWpTXaNrXDFiQKsgaNLMF6PBQOpQdDvrVaKoBW1TVaa5RZLms5Y9d_3kBE2_142DB-b48PyR8pzVfY</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Bing Chu</creator><creator>Duncan, S.</creator><creator>Papachristodoulou, A.</creator><creator>Hepburn, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>Using economic Model Predictive Control to design sustainable policies for mitigating climate change</title><author>Bing Chu ; Duncan, S. ; Papachristodoulou, A. ; Hepburn, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-69b23d7779869dba2f0321e98283709c2798a23c08ecf963400f4bb29984855b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carbon tax</topic><topic>Feedback control</topic><topic>Mathematical model</topic><topic>Meteorology</topic><topic>Ocean temperature</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Bing Chu</creatorcontrib><creatorcontrib>Duncan, S.</creatorcontrib><creatorcontrib>Papachristodoulou, A.</creatorcontrib><creatorcontrib>Hepburn, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bing Chu</au><au>Duncan, S.</au><au>Papachristodoulou, A.</au><au>Hepburn, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using economic Model Predictive Control to design sustainable policies for mitigating climate change</atitle><btitle>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2012-12</date><risdate>2012</risdate><spage>406</spage><epage>411</epage><pages>406-411</pages><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><eisbn>1467320633</eisbn><eisbn>1467320668</eisbn><eisbn>9781467320634</eisbn><eisbn>9781467320665</eisbn><eisbn>9781467320641</eisbn><eisbn>1467320641</eisbn><abstract>Reducing greenhouse gas emissions is now an important and pressing matter. Systems control theory, and in particular feedback control, can contribute to the design of policies that achieve sustainable levels of emissions of CO 2 (and other greenhouse gases) while minimizing the impact on the economy, and at the same time explicitly addressing the high levels of uncertainty associated with predictions of future emissions. In this paper, preliminary results are described for an approach where economic Model Predictive Control (MPC) is applied to a Regional dynamic Integrated model of Climate and the Economy (RICE model) as a test bed to design savings rates and global carbon tax for greenhouse gas emissions. Using feedback control, the policies are updated on the basis of the observed emissions, rather than on the predicted level of emissions. The basic structure and principle of the RICE model is firstly introduced and some key equations are described. The idea of introducing feedback control is then explained and economic MPC is applied to design policies for CO 2 emissions. Simulation results are presented to demonstrate the effectiveness of the proposed method for two different scenarios. Feedback control design provides a degree of robustness against disturbances and model uncertainties, which is illustrated through a simulation study with two particular types of uncertainties. The results obtained in this paper illustrate the strength of the proposed design approach and form the basis for future research on using systems control theory to design optimal sustainable policies.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2012.6426649</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.406-411 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_6426649 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Carbon tax Feedback control Mathematical model Meteorology Ocean temperature Uncertainty |
title | Using economic Model Predictive Control to design sustainable policies for mitigating climate change |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20economic%20Model%20Predictive%20Control%20to%20design%20sustainable%20policies%20for%20mitigating%20climate%20change&rft.btitle=2012%20IEEE%2051st%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Bing%20Chu&rft.date=2012-12&rft.spage=406&rft.epage=411&rft.pages=406-411&rft.issn=0191-2216&rft.isbn=9781467320658&rft.isbn_list=146732065X&rft_id=info:doi/10.1109/CDC.2012.6426649&rft_dat=%3Cieee_6IE%3E6426649%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467320633&rft.eisbn_list=1467320668&rft.eisbn_list=9781467320634&rft.eisbn_list=9781467320665&rft.eisbn_list=9781467320641&rft.eisbn_list=1467320641&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6426649&rfr_iscdi=true |