Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise
The new algorithm is proposed for the estimating of linear plant's unknown parameters in the case of observations with arbitrary external noises. It is based on adding of randomized inputs (test perturbations) through the feedback channel. The assumptions about the noise are reduced to a minimu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2139 |
---|---|
container_issue | |
container_start_page | 2134 |
container_title | |
container_volume | |
creator | Amelin, K. Amelina, N. Granichin, O. Granichina, O. |
description | The new algorithm is proposed for the estimating of linear plant's unknown parameters in the case of observations with arbitrary external noises. It is based on adding of randomized inputs (test perturbations) through the feedback channel. The assumptions about the noise are reduced to a minimum: it can virtually be arbitrary but independently of it the user must be able to add test perturbations. We combine the previous result about asymptotic properties of randomized control strategy with the new one which is followed by a non-asymptotic approach of LSCR (Leave-out Sign-dominant Correlation Regions) method. The new algorithm gives confidence regions for series of finite sets of observations. These regions shrink to the true values of an unknown parameters when number of observations tents to infinity while the algorithm complexity does not increases. |
doi_str_mv | 10.1109/CDC.2012.6426338 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6426338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6426338</ieee_id><sourcerecordid>6426338</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2702649391d4e64703611f38a3ef1e92d7f102d893ae169e4cf9b3522280d763</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhCMq2NbeBS-5edqaN9kmm6Os9QMKXvRc0s0bG9lNlmyKHyd_uivW0_AwwzAMIRfAFgBMX9e39YIz4AtZcilEdUSmUEolOBvpmMy1qv55WZ2QCQMNBecgz8h0GN4YYxWTckK-69htfUBL-xQbtPuE9N3nHU0m2Nj5r9FpYsgptgN1MdG8Q9qbZDrMmIarX9N5i6FBmvDVx0Cjo-3YaBLtWxMy3QeLieLHmA-mpSZtfU4mfdIQ_YDn5NSZdsD5QWfk5W71XD8U66f7x_pmXXhQy1w4rhiXpRYabImyVExIACcqI9ABam6VA8ZtpYVBkBrLxumtWHLOK2aVFDNy-dfrEXHTJ9-NEzaH98QPYzZi4w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Amelin, K. ; Amelina, N. ; Granichin, O. ; Granichina, O.</creator><creatorcontrib>Amelin, K. ; Amelina, N. ; Granichin, O. ; Granichina, O.</creatorcontrib><description>The new algorithm is proposed for the estimating of linear plant's unknown parameters in the case of observations with arbitrary external noises. It is based on adding of randomized inputs (test perturbations) through the feedback channel. The assumptions about the noise are reduced to a minimum: it can virtually be arbitrary but independently of it the user must be able to add test perturbations. We combine the previous result about asymptotic properties of randomized control strategy with the new one which is followed by a non-asymptotic approach of LSCR (Leave-out Sign-dominant Correlation Regions) method. The new algorithm gives confidence regions for series of finite sets of observations. These regions shrink to the true values of an unknown parameters when number of observations tents to infinity while the algorithm complexity does not increases.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781467320658</identifier><identifier>ISBN: 146732065X</identifier><identifier>EISBN: 1467320633</identifier><identifier>EISBN: 1467320668</identifier><identifier>EISBN: 9781467320634</identifier><identifier>EISBN: 9781467320665</identifier><identifier>EISBN: 9781467320641</identifier><identifier>EISBN: 1467320641</identifier><identifier>DOI: 10.1109/CDC.2012.6426338</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Autoregressive processes ; Equations ; Estimation ; Mathematical model ; Noise ; Stochastic processes</subject><ispartof>2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.2134-2139</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6426338$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6426338$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amelin, K.</creatorcontrib><creatorcontrib>Amelina, N.</creatorcontrib><creatorcontrib>Granichin, O.</creatorcontrib><creatorcontrib>Granichina, O.</creatorcontrib><title>Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise</title><title>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>The new algorithm is proposed for the estimating of linear plant's unknown parameters in the case of observations with arbitrary external noises. It is based on adding of randomized inputs (test perturbations) through the feedback channel. The assumptions about the noise are reduced to a minimum: it can virtually be arbitrary but independently of it the user must be able to add test perturbations. We combine the previous result about asymptotic properties of randomized control strategy with the new one which is followed by a non-asymptotic approach of LSCR (Leave-out Sign-dominant Correlation Regions) method. The new algorithm gives confidence regions for series of finite sets of observations. These regions shrink to the true values of an unknown parameters when number of observations tents to infinity while the algorithm complexity does not increases.</description><subject>Approximation algorithms</subject><subject>Autoregressive processes</subject><subject>Equations</subject><subject>Estimation</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>Stochastic processes</subject><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><isbn>1467320633</isbn><isbn>1467320668</isbn><isbn>9781467320634</isbn><isbn>9781467320665</isbn><isbn>9781467320641</isbn><isbn>1467320641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1LAzEYhCMq2NbeBS-5edqaN9kmm6Os9QMKXvRc0s0bG9lNlmyKHyd_uivW0_AwwzAMIRfAFgBMX9e39YIz4AtZcilEdUSmUEolOBvpmMy1qv55WZ2QCQMNBecgz8h0GN4YYxWTckK-69htfUBL-xQbtPuE9N3nHU0m2Nj5r9FpYsgptgN1MdG8Q9qbZDrMmIarX9N5i6FBmvDVx0Cjo-3YaBLtWxMy3QeLieLHmA-mpSZtfU4mfdIQ_YDn5NSZdsD5QWfk5W71XD8U66f7x_pmXXhQy1w4rhiXpRYabImyVExIACcqI9ABam6VA8ZtpYVBkBrLxumtWHLOK2aVFDNy-dfrEXHTJ9-NEzaH98QPYzZi4w</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Amelin, K.</creator><creator>Amelina, N.</creator><creator>Granichin, O.</creator><creator>Granichina, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise</title><author>Amelin, K. ; Amelina, N. ; Granichin, O. ; Granichina, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2702649391d4e64703611f38a3ef1e92d7f102d893ae169e4cf9b3522280d763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation algorithms</topic><topic>Autoregressive processes</topic><topic>Equations</topic><topic>Estimation</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Amelin, K.</creatorcontrib><creatorcontrib>Amelina, N.</creatorcontrib><creatorcontrib>Granichin, O.</creatorcontrib><creatorcontrib>Granichina, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amelin, K.</au><au>Amelina, N.</au><au>Granichin, O.</au><au>Granichina, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise</atitle><btitle>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2012-12</date><risdate>2012</risdate><spage>2134</spage><epage>2139</epage><pages>2134-2139</pages><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><eisbn>1467320633</eisbn><eisbn>1467320668</eisbn><eisbn>9781467320634</eisbn><eisbn>9781467320665</eisbn><eisbn>9781467320641</eisbn><eisbn>1467320641</eisbn><abstract>The new algorithm is proposed for the estimating of linear plant's unknown parameters in the case of observations with arbitrary external noises. It is based on adding of randomized inputs (test perturbations) through the feedback channel. The assumptions about the noise are reduced to a minimum: it can virtually be arbitrary but independently of it the user must be able to add test perturbations. We combine the previous result about asymptotic properties of randomized control strategy with the new one which is followed by a non-asymptotic approach of LSCR (Leave-out Sign-dominant Correlation Regions) method. The new algorithm gives confidence regions for series of finite sets of observations. These regions shrink to the true values of an unknown parameters when number of observations tents to infinity while the algorithm complexity does not increases.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2012.6426338</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.2134-2139 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_6426338 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation algorithms Autoregressive processes Equations Estimation Mathematical model Noise Stochastic processes |
title | Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Combined%20procedure%20with%20randomized%20controls%20for%20the%20parameters'%20confidence%20region%20of%20linear%20plant%20under%20external%20arbitrary%20noise&rft.btitle=2012%20IEEE%2051st%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Amelin,%20K.&rft.date=2012-12&rft.spage=2134&rft.epage=2139&rft.pages=2134-2139&rft.issn=0191-2216&rft.isbn=9781467320658&rft.isbn_list=146732065X&rft_id=info:doi/10.1109/CDC.2012.6426338&rft_dat=%3Cieee_6IE%3E6426338%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467320633&rft.eisbn_list=1467320668&rft.eisbn_list=9781467320634&rft.eisbn_list=9781467320665&rft.eisbn_list=9781467320641&rft.eisbn_list=1467320641&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6426338&rfr_iscdi=true |