Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise

The new algorithm is proposed for the estimating of linear plant's unknown parameters in the case of observations with arbitrary external noises. It is based on adding of randomized inputs (test perturbations) through the feedback channel. The assumptions about the noise are reduced to a minimu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Amelin, K., Amelina, N., Granichin, O., Granichina, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2139
container_issue
container_start_page 2134
container_title
container_volume
creator Amelin, K.
Amelina, N.
Granichin, O.
Granichina, O.
description The new algorithm is proposed for the estimating of linear plant's unknown parameters in the case of observations with arbitrary external noises. It is based on adding of randomized inputs (test perturbations) through the feedback channel. The assumptions about the noise are reduced to a minimum: it can virtually be arbitrary but independently of it the user must be able to add test perturbations. We combine the previous result about asymptotic properties of randomized control strategy with the new one which is followed by a non-asymptotic approach of LSCR (Leave-out Sign-dominant Correlation Regions) method. The new algorithm gives confidence regions for series of finite sets of observations. These regions shrink to the true values of an unknown parameters when number of observations tents to infinity while the algorithm complexity does not increases.
doi_str_mv 10.1109/CDC.2012.6426338
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6426338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6426338</ieee_id><sourcerecordid>6426338</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2702649391d4e64703611f38a3ef1e92d7f102d893ae169e4cf9b3522280d763</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhCMq2NbeBS-5edqaN9kmm6Os9QMKXvRc0s0bG9lNlmyKHyd_uivW0_AwwzAMIRfAFgBMX9e39YIz4AtZcilEdUSmUEolOBvpmMy1qv55WZ2QCQMNBecgz8h0GN4YYxWTckK-69htfUBL-xQbtPuE9N3nHU0m2Nj5r9FpYsgptgN1MdG8Q9qbZDrMmIarX9N5i6FBmvDVx0Cjo-3YaBLtWxMy3QeLieLHmA-mpSZtfU4mfdIQ_YDn5NSZdsD5QWfk5W71XD8U66f7x_pmXXhQy1w4rhiXpRYabImyVExIACcqI9ABam6VA8ZtpYVBkBrLxumtWHLOK2aVFDNy-dfrEXHTJ9-NEzaH98QPYzZi4w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Amelin, K. ; Amelina, N. ; Granichin, O. ; Granichina, O.</creator><creatorcontrib>Amelin, K. ; Amelina, N. ; Granichin, O. ; Granichina, O.</creatorcontrib><description>The new algorithm is proposed for the estimating of linear plant's unknown parameters in the case of observations with arbitrary external noises. It is based on adding of randomized inputs (test perturbations) through the feedback channel. The assumptions about the noise are reduced to a minimum: it can virtually be arbitrary but independently of it the user must be able to add test perturbations. We combine the previous result about asymptotic properties of randomized control strategy with the new one which is followed by a non-asymptotic approach of LSCR (Leave-out Sign-dominant Correlation Regions) method. The new algorithm gives confidence regions for series of finite sets of observations. These regions shrink to the true values of an unknown parameters when number of observations tents to infinity while the algorithm complexity does not increases.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781467320658</identifier><identifier>ISBN: 146732065X</identifier><identifier>EISBN: 1467320633</identifier><identifier>EISBN: 1467320668</identifier><identifier>EISBN: 9781467320634</identifier><identifier>EISBN: 9781467320665</identifier><identifier>EISBN: 9781467320641</identifier><identifier>EISBN: 1467320641</identifier><identifier>DOI: 10.1109/CDC.2012.6426338</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Autoregressive processes ; Equations ; Estimation ; Mathematical model ; Noise ; Stochastic processes</subject><ispartof>2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.2134-2139</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6426338$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6426338$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amelin, K.</creatorcontrib><creatorcontrib>Amelina, N.</creatorcontrib><creatorcontrib>Granichin, O.</creatorcontrib><creatorcontrib>Granichina, O.</creatorcontrib><title>Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise</title><title>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>The new algorithm is proposed for the estimating of linear plant's unknown parameters in the case of observations with arbitrary external noises. It is based on adding of randomized inputs (test perturbations) through the feedback channel. The assumptions about the noise are reduced to a minimum: it can virtually be arbitrary but independently of it the user must be able to add test perturbations. We combine the previous result about asymptotic properties of randomized control strategy with the new one which is followed by a non-asymptotic approach of LSCR (Leave-out Sign-dominant Correlation Regions) method. The new algorithm gives confidence regions for series of finite sets of observations. These regions shrink to the true values of an unknown parameters when number of observations tents to infinity while the algorithm complexity does not increases.</description><subject>Approximation algorithms</subject><subject>Autoregressive processes</subject><subject>Equations</subject><subject>Estimation</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>Stochastic processes</subject><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><isbn>1467320633</isbn><isbn>1467320668</isbn><isbn>9781467320634</isbn><isbn>9781467320665</isbn><isbn>9781467320641</isbn><isbn>1467320641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1LAzEYhCMq2NbeBS-5edqaN9kmm6Os9QMKXvRc0s0bG9lNlmyKHyd_uivW0_AwwzAMIRfAFgBMX9e39YIz4AtZcilEdUSmUEolOBvpmMy1qv55WZ2QCQMNBecgz8h0GN4YYxWTckK-69htfUBL-xQbtPuE9N3nHU0m2Nj5r9FpYsgptgN1MdG8Q9qbZDrMmIarX9N5i6FBmvDVx0Cjo-3YaBLtWxMy3QeLieLHmA-mpSZtfU4mfdIQ_YDn5NSZdsD5QWfk5W71XD8U66f7x_pmXXhQy1w4rhiXpRYabImyVExIACcqI9ABam6VA8ZtpYVBkBrLxumtWHLOK2aVFDNy-dfrEXHTJ9-NEzaH98QPYzZi4w</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Amelin, K.</creator><creator>Amelina, N.</creator><creator>Granichin, O.</creator><creator>Granichina, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise</title><author>Amelin, K. ; Amelina, N. ; Granichin, O. ; Granichina, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2702649391d4e64703611f38a3ef1e92d7f102d893ae169e4cf9b3522280d763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation algorithms</topic><topic>Autoregressive processes</topic><topic>Equations</topic><topic>Estimation</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Amelin, K.</creatorcontrib><creatorcontrib>Amelina, N.</creatorcontrib><creatorcontrib>Granichin, O.</creatorcontrib><creatorcontrib>Granichina, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amelin, K.</au><au>Amelina, N.</au><au>Granichin, O.</au><au>Granichina, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise</atitle><btitle>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2012-12</date><risdate>2012</risdate><spage>2134</spage><epage>2139</epage><pages>2134-2139</pages><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><eisbn>1467320633</eisbn><eisbn>1467320668</eisbn><eisbn>9781467320634</eisbn><eisbn>9781467320665</eisbn><eisbn>9781467320641</eisbn><eisbn>1467320641</eisbn><abstract>The new algorithm is proposed for the estimating of linear plant's unknown parameters in the case of observations with arbitrary external noises. It is based on adding of randomized inputs (test perturbations) through the feedback channel. The assumptions about the noise are reduced to a minimum: it can virtually be arbitrary but independently of it the user must be able to add test perturbations. We combine the previous result about asymptotic properties of randomized control strategy with the new one which is followed by a non-asymptotic approach of LSCR (Leave-out Sign-dominant Correlation Regions) method. The new algorithm gives confidence regions for series of finite sets of observations. These regions shrink to the true values of an unknown parameters when number of observations tents to infinity while the algorithm complexity does not increases.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2012.6426338</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.2134-2139
issn 0191-2216
language eng
recordid cdi_ieee_primary_6426338
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Autoregressive processes
Equations
Estimation
Mathematical model
Noise
Stochastic processes
title Combined procedure with randomized controls for the parameters' confidence region of linear plant under external arbitrary noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Combined%20procedure%20with%20randomized%20controls%20for%20the%20parameters'%20confidence%20region%20of%20linear%20plant%20under%20external%20arbitrary%20noise&rft.btitle=2012%20IEEE%2051st%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Amelin,%20K.&rft.date=2012-12&rft.spage=2134&rft.epage=2139&rft.pages=2134-2139&rft.issn=0191-2216&rft.isbn=9781467320658&rft.isbn_list=146732065X&rft_id=info:doi/10.1109/CDC.2012.6426338&rft_dat=%3Cieee_6IE%3E6426338%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467320633&rft.eisbn_list=1467320668&rft.eisbn_list=9781467320634&rft.eisbn_list=9781467320665&rft.eisbn_list=9781467320641&rft.eisbn_list=1467320641&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6426338&rfr_iscdi=true