Probabilistic formulation of estimation problems for a class of Hamilton-Jacobi equations

This article presents a method for deriving the probability distribution of the solution to a Hamilton-Jacobi partial differential equation for which the value conditions are random. The derivations lead to analytical or semi-analytical expressions of the probability distribution function at any poi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hofleitner, A., Claudel, C., Bayen, A. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3537
container_issue
container_start_page 3531
container_title
container_volume
creator Hofleitner, A.
Claudel, C.
Bayen, A. M.
description This article presents a method for deriving the probability distribution of the solution to a Hamilton-Jacobi partial differential equation for which the value conditions are random. The derivations lead to analytical or semi-analytical expressions of the probability distribution function at any point in the domain in which the solution is defined. The characterization of the distribution of the solution at any point is a first step towards the estimation of the parameters defining the random value conditions. This work has important applications for estimation in flow networks in which value conditions are noisy. In particular, we illustrate our derivations on a road segment with random capacity reductions.
doi_str_mv 10.1109/CDC.2012.6426316
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6426316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6426316</ieee_id><sourcerecordid>6426316</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c81e720b6b50c5a29f60e457a129f70bedd984d2fe82ab35915629976cd6583e3</originalsourceid><addsrcrecordid>eNo1kE9PwzAMxYMAiW3sjsQlX6DDTpp_R1QYA02CAxw4TUmaSkHtMpruwLenY-Pk96yfrWcTcoOwQARzVz1UCwbIFrJkkqM8I1MspeIMJOfnZG6U_vdCX5AJoMGCMZRXZJrzFwBokHJCPt_65KyLbcxD9LRJfbdv7RDTlqaGhrHZHd1u5NrQ5QNCLfWtzfmArGwX2yFtixfrk4s0fO__BvI1uWxsm8P8VGfkY_n4Xq2K9evTc3W_LiIqMRReY1AMnHQCvLDMNBJCKZTFUSpwoa6NLmvWBM2s48KgkMwYJX09XsYDn5Hb494YQtjs-jFw_7M5vYX_AjiLVK0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic formulation of estimation problems for a class of Hamilton-Jacobi equations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hofleitner, A. ; Claudel, C. ; Bayen, A. M.</creator><creatorcontrib>Hofleitner, A. ; Claudel, C. ; Bayen, A. M.</creatorcontrib><description>This article presents a method for deriving the probability distribution of the solution to a Hamilton-Jacobi partial differential equation for which the value conditions are random. The derivations lead to analytical or semi-analytical expressions of the probability distribution function at any point in the domain in which the solution is defined. The characterization of the distribution of the solution at any point is a first step towards the estimation of the parameters defining the random value conditions. This work has important applications for estimation in flow networks in which value conditions are noisy. In particular, we illustrate our derivations on a road segment with random capacity reductions.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781467320658</identifier><identifier>ISBN: 146732065X</identifier><identifier>EISBN: 1467320633</identifier><identifier>EISBN: 1467320668</identifier><identifier>EISBN: 9781467320634</identifier><identifier>EISBN: 9781467320665</identifier><identifier>EISBN: 9781467320641</identifier><identifier>EISBN: 1467320641</identifier><identifier>DOI: 10.1109/CDC.2012.6426316</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boundary conditions ; Equations ; Estimation ; Noise measurement ; Probabilistic logic ; Probability distribution ; Random variables</subject><ispartof>2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.3531-3537</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6426316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6426316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hofleitner, A.</creatorcontrib><creatorcontrib>Claudel, C.</creatorcontrib><creatorcontrib>Bayen, A. M.</creatorcontrib><title>Probabilistic formulation of estimation problems for a class of Hamilton-Jacobi equations</title><title>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>This article presents a method for deriving the probability distribution of the solution to a Hamilton-Jacobi partial differential equation for which the value conditions are random. The derivations lead to analytical or semi-analytical expressions of the probability distribution function at any point in the domain in which the solution is defined. The characterization of the distribution of the solution at any point is a first step towards the estimation of the parameters defining the random value conditions. This work has important applications for estimation in flow networks in which value conditions are noisy. In particular, we illustrate our derivations on a road segment with random capacity reductions.</description><subject>Boundary conditions</subject><subject>Equations</subject><subject>Estimation</subject><subject>Noise measurement</subject><subject>Probabilistic logic</subject><subject>Probability distribution</subject><subject>Random variables</subject><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><isbn>1467320633</isbn><isbn>1467320668</isbn><isbn>9781467320634</isbn><isbn>9781467320665</isbn><isbn>9781467320641</isbn><isbn>1467320641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE9PwzAMxYMAiW3sjsQlX6DDTpp_R1QYA02CAxw4TUmaSkHtMpruwLenY-Pk96yfrWcTcoOwQARzVz1UCwbIFrJkkqM8I1MspeIMJOfnZG6U_vdCX5AJoMGCMZRXZJrzFwBokHJCPt_65KyLbcxD9LRJfbdv7RDTlqaGhrHZHd1u5NrQ5QNCLfWtzfmArGwX2yFtixfrk4s0fO__BvI1uWxsm8P8VGfkY_n4Xq2K9evTc3W_LiIqMRReY1AMnHQCvLDMNBJCKZTFUSpwoa6NLmvWBM2s48KgkMwYJX09XsYDn5Hb494YQtjs-jFw_7M5vYX_AjiLVK0</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Hofleitner, A.</creator><creator>Claudel, C.</creator><creator>Bayen, A. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>Probabilistic formulation of estimation problems for a class of Hamilton-Jacobi equations</title><author>Hofleitner, A. ; Claudel, C. ; Bayen, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c81e720b6b50c5a29f60e457a129f70bedd984d2fe82ab35915629976cd6583e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boundary conditions</topic><topic>Equations</topic><topic>Estimation</topic><topic>Noise measurement</topic><topic>Probabilistic logic</topic><topic>Probability distribution</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Hofleitner, A.</creatorcontrib><creatorcontrib>Claudel, C.</creatorcontrib><creatorcontrib>Bayen, A. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hofleitner, A.</au><au>Claudel, C.</au><au>Bayen, A. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic formulation of estimation problems for a class of Hamilton-Jacobi equations</atitle><btitle>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2012-12</date><risdate>2012</risdate><spage>3531</spage><epage>3537</epage><pages>3531-3537</pages><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><eisbn>1467320633</eisbn><eisbn>1467320668</eisbn><eisbn>9781467320634</eisbn><eisbn>9781467320665</eisbn><eisbn>9781467320641</eisbn><eisbn>1467320641</eisbn><abstract>This article presents a method for deriving the probability distribution of the solution to a Hamilton-Jacobi partial differential equation for which the value conditions are random. The derivations lead to analytical or semi-analytical expressions of the probability distribution function at any point in the domain in which the solution is defined. The characterization of the distribution of the solution at any point is a first step towards the estimation of the parameters defining the random value conditions. This work has important applications for estimation in flow networks in which value conditions are noisy. In particular, we illustrate our derivations on a road segment with random capacity reductions.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2012.6426316</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.3531-3537
issn 0191-2216
language eng
recordid cdi_ieee_primary_6426316
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Boundary conditions
Equations
Estimation
Noise measurement
Probabilistic logic
Probability distribution
Random variables
title Probabilistic formulation of estimation problems for a class of Hamilton-Jacobi equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20formulation%20of%20estimation%20problems%20for%20a%20class%20of%20Hamilton-Jacobi%20equations&rft.btitle=2012%20IEEE%2051st%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Hofleitner,%20A.&rft.date=2012-12&rft.spage=3531&rft.epage=3537&rft.pages=3531-3537&rft.issn=0191-2216&rft.isbn=9781467320658&rft.isbn_list=146732065X&rft_id=info:doi/10.1109/CDC.2012.6426316&rft_dat=%3Cieee_6IE%3E6426316%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467320633&rft.eisbn_list=1467320668&rft.eisbn_list=9781467320634&rft.eisbn_list=9781467320665&rft.eisbn_list=9781467320641&rft.eisbn_list=1467320641&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6426316&rfr_iscdi=true