Stabilizing a random dynamics network with a random communications network

We study a networked control system with identical linear time-invariant subsystems and identical couplings. Using the Lyapunov method, we derive a sufficient network stability condition. Then, based on this condition we calculate bounds on the probability of stability of a random dynamics network w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Manaffam, S., Razeghi-Jahromi, M., Seyedi, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 751
container_issue
container_start_page 746
container_title
container_volume
creator Manaffam, S.
Razeghi-Jahromi, M.
Seyedi, A.
description We study a networked control system with identical linear time-invariant subsystems and identical couplings. Using the Lyapunov method, we derive a sufficient network stability condition. Then, based on this condition we calculate bounds on the probability of stability of a random dynamics network with a random communications network. Finally, we investigate the stability trends of the random networks in the asymptotic regime. Numerical examples validate our analytical results.
doi_str_mv 10.1109/CDC.2012.6425998
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6425998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6425998</ieee_id><sourcerecordid>6425998</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a625691714c8e7ab5147b9a660215516dafe0b78e83d3a7db6f1a53811da93ae3</originalsourceid><addsrcrecordid>eNpFkE1PwzAQRI0Aibb0jsQlfyBl147X9hEFyocqcQDO1SZ2wNA4KAmqyq_nQIHTaPRG7zBCnCEsEMFdlFflQgLKBRVSO2cPxBQLMkoCKXUo5s7Y367tkZgAOsylRDoR02F4AwALRBNx_zhyFTfxK6aXjLOek-_azO8St7EeshTGbde_Z9s4vv7jumvbzxRrHmOX_kan4rjhzRDm-5yJ5-X1U3mbrx5u7srLVR7R6DFnkpocGixqGwxXGgtTOSYCiVojeW4CVMYGq7xi4ytqkLWyiJ6d4qBm4vzHG0MI648-ttzv1vsf1Deelk97</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stabilizing a random dynamics network with a random communications network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Manaffam, S. ; Razeghi-Jahromi, M. ; Seyedi, A.</creator><creatorcontrib>Manaffam, S. ; Razeghi-Jahromi, M. ; Seyedi, A.</creatorcontrib><description>We study a networked control system with identical linear time-invariant subsystems and identical couplings. Using the Lyapunov method, we derive a sufficient network stability condition. Then, based on this condition we calculate bounds on the probability of stability of a random dynamics network with a random communications network. Finally, we investigate the stability trends of the random networks in the asymptotic regime. Numerical examples validate our analytical results.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781467320658</identifier><identifier>ISBN: 146732065X</identifier><identifier>EISBN: 1467320633</identifier><identifier>EISBN: 1467320668</identifier><identifier>EISBN: 9781467320634</identifier><identifier>EISBN: 9781467320665</identifier><identifier>EISBN: 9781467320641</identifier><identifier>EISBN: 1467320641</identifier><identifier>DOI: 10.1109/CDC.2012.6425998</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic stability ; Communication networks ; Couplings ; Lyapunov methods ; Numerical stability ; Stability analysis ; Vectors</subject><ispartof>2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.746-751</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6425998$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6425998$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manaffam, S.</creatorcontrib><creatorcontrib>Razeghi-Jahromi, M.</creatorcontrib><creatorcontrib>Seyedi, A.</creatorcontrib><title>Stabilizing a random dynamics network with a random communications network</title><title>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>We study a networked control system with identical linear time-invariant subsystems and identical couplings. Using the Lyapunov method, we derive a sufficient network stability condition. Then, based on this condition we calculate bounds on the probability of stability of a random dynamics network with a random communications network. Finally, we investigate the stability trends of the random networks in the asymptotic regime. Numerical examples validate our analytical results.</description><subject>Asymptotic stability</subject><subject>Communication networks</subject><subject>Couplings</subject><subject>Lyapunov methods</subject><subject>Numerical stability</subject><subject>Stability analysis</subject><subject>Vectors</subject><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><isbn>1467320633</isbn><isbn>1467320668</isbn><isbn>9781467320634</isbn><isbn>9781467320665</isbn><isbn>9781467320641</isbn><isbn>1467320641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE1PwzAQRI0Aibb0jsQlfyBl147X9hEFyocqcQDO1SZ2wNA4KAmqyq_nQIHTaPRG7zBCnCEsEMFdlFflQgLKBRVSO2cPxBQLMkoCKXUo5s7Y367tkZgAOsylRDoR02F4AwALRBNx_zhyFTfxK6aXjLOek-_azO8St7EeshTGbde_Z9s4vv7jumvbzxRrHmOX_kan4rjhzRDm-5yJ5-X1U3mbrx5u7srLVR7R6DFnkpocGixqGwxXGgtTOSYCiVojeW4CVMYGq7xi4ytqkLWyiJ6d4qBm4vzHG0MI648-ttzv1vsf1Deelk97</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Manaffam, S.</creator><creator>Razeghi-Jahromi, M.</creator><creator>Seyedi, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>Stabilizing a random dynamics network with a random communications network</title><author>Manaffam, S. ; Razeghi-Jahromi, M. ; Seyedi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a625691714c8e7ab5147b9a660215516dafe0b78e83d3a7db6f1a53811da93ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic stability</topic><topic>Communication networks</topic><topic>Couplings</topic><topic>Lyapunov methods</topic><topic>Numerical stability</topic><topic>Stability analysis</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Manaffam, S.</creatorcontrib><creatorcontrib>Razeghi-Jahromi, M.</creatorcontrib><creatorcontrib>Seyedi, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manaffam, S.</au><au>Razeghi-Jahromi, M.</au><au>Seyedi, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stabilizing a random dynamics network with a random communications network</atitle><btitle>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2012-12</date><risdate>2012</risdate><spage>746</spage><epage>751</epage><pages>746-751</pages><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><eisbn>1467320633</eisbn><eisbn>1467320668</eisbn><eisbn>9781467320634</eisbn><eisbn>9781467320665</eisbn><eisbn>9781467320641</eisbn><eisbn>1467320641</eisbn><abstract>We study a networked control system with identical linear time-invariant subsystems and identical couplings. Using the Lyapunov method, we derive a sufficient network stability condition. Then, based on this condition we calculate bounds on the probability of stability of a random dynamics network with a random communications network. Finally, we investigate the stability trends of the random networks in the asymptotic regime. Numerical examples validate our analytical results.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2012.6425998</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.746-751
issn 0191-2216
language eng
recordid cdi_ieee_primary_6425998
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Asymptotic stability
Communication networks
Couplings
Lyapunov methods
Numerical stability
Stability analysis
Vectors
title Stabilizing a random dynamics network with a random communications network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stabilizing%20a%20random%20dynamics%20network%20with%20a%20random%20communications%20network&rft.btitle=2012%20IEEE%2051st%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Manaffam,%20S.&rft.date=2012-12&rft.spage=746&rft.epage=751&rft.pages=746-751&rft.issn=0191-2216&rft.isbn=9781467320658&rft.isbn_list=146732065X&rft_id=info:doi/10.1109/CDC.2012.6425998&rft_dat=%3Cieee_6IE%3E6425998%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467320633&rft.eisbn_list=1467320668&rft.eisbn_list=9781467320634&rft.eisbn_list=9781467320665&rft.eisbn_list=9781467320641&rft.eisbn_list=1467320641&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6425998&rfr_iscdi=true