A comparison of thermal zone aggregation methods
The impact of increasing energy prices on building operation budgets has fueled demand for more energy-efficient structures. Existing building energy simulation tools generate an immense amount of data yet comparatively little knowledge. This paper introduces a framework that allows aggregation-base...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6944 |
---|---|
container_issue | |
container_start_page | 6938 |
container_title | |
container_volume | |
creator | Dobbs, J. R. Hencey, B. M. |
description | The impact of increasing energy prices on building operation budgets has fueled demand for more energy-efficient structures. Existing building energy simulation tools generate an immense amount of data yet comparatively little knowledge. This paper introduces a framework that allows aggregation-based model reduction to operate on geometric building information models. The resulting aggregation sequence provides designers with faster simulations and affords insight into complex multi-scale thermal interactions. A comparison of the trade-off between simulation speed and accuracy for three hierarchical cluster partitioning methods concludes the discussion. |
doi_str_mv | 10.1109/CDC.2012.6425888 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6425888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6425888</ieee_id><sourcerecordid>6425888</sourcerecordid><originalsourceid>FETCH-LOGICAL-i244t-2699fc80420f1a9a36bde28d45ee464effd80a2cf78656f231b86a158cf43dd43</originalsourceid><addsrcrecordid>eNo1kM1LAzEUxCMq2NbeBS-L963vJdn07bGsn1Dwouclzb60ke6mbHLRv95C62kY5sfAjBB3CAtEqB-bp2YhAeXCaFkR0YWYojZLJcEodSnm9ZL-fUVXYgJYYyklmhsxTekbAAiMmQhYFS72BzuGFIci-iLveOztvviNAxd2ux15a3M4Zj3nXezSrbj2dp94ftaZ-Hp5_mzeyvXH63uzWpdBap1LaeraOwItwaOtrTKbjiV1umLWRrP3HYGVzi_JVMZLhRsyFityXquu02omHk69MeXQJhcyu52Lw8AutwiE1XHoTNyfoMDM7WEMvR1_2vMl6g9x1VE8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A comparison of thermal zone aggregation methods</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dobbs, J. R. ; Hencey, B. M.</creator><creatorcontrib>Dobbs, J. R. ; Hencey, B. M. ; Cornell University, Ithaca, NY</creatorcontrib><description>The impact of increasing energy prices on building operation budgets has fueled demand for more energy-efficient structures. Existing building energy simulation tools generate an immense amount of data yet comparatively little knowledge. This paper introduces a framework that allows aggregation-based model reduction to operate on geometric building information models. The resulting aggregation sequence provides designers with faster simulations and affords insight into complex multi-scale thermal interactions. A comparison of the trade-off between simulation speed and accuracy for three hierarchical cluster partitioning methods concludes the discussion.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781467320658</identifier><identifier>ISBN: 146732065X</identifier><identifier>EISBN: 1467320633</identifier><identifier>EISBN: 1467320668</identifier><identifier>EISBN: 9781467320634</identifier><identifier>EISBN: 9781467320665</identifier><identifier>EISBN: 9781467320641</identifier><identifier>EISBN: 1467320641</identifier><identifier>DOI: 10.1109/CDC.2012.6425888</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Atmospheric modeling ; Buildings ; Capacitance ; Capacitors ; geometric building information models ; hierarchical cluster partitioning methods ; MATHEMATICS AND COMPUTING ; Object oriented modeling ; Reduced order systems ; Solid modeling ; thermal zone aggregation-based model reduction</subject><ispartof>2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.6938-6944</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6425888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6425888$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1081563$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dobbs, J. R.</creatorcontrib><creatorcontrib>Hencey, B. M.</creatorcontrib><creatorcontrib>Cornell University, Ithaca, NY</creatorcontrib><title>A comparison of thermal zone aggregation methods</title><title>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>The impact of increasing energy prices on building operation budgets has fueled demand for more energy-efficient structures. Existing building energy simulation tools generate an immense amount of data yet comparatively little knowledge. This paper introduces a framework that allows aggregation-based model reduction to operate on geometric building information models. The resulting aggregation sequence provides designers with faster simulations and affords insight into complex multi-scale thermal interactions. A comparison of the trade-off between simulation speed and accuracy for three hierarchical cluster partitioning methods concludes the discussion.</description><subject>Atmospheric modeling</subject><subject>Buildings</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>geometric building information models</subject><subject>hierarchical cluster partitioning methods</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Object oriented modeling</subject><subject>Reduced order systems</subject><subject>Solid modeling</subject><subject>thermal zone aggregation-based model reduction</subject><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><isbn>1467320633</isbn><isbn>1467320668</isbn><isbn>9781467320634</isbn><isbn>9781467320665</isbn><isbn>9781467320641</isbn><isbn>1467320641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1LAzEUxCMq2NbeBS-L963vJdn07bGsn1Dwouclzb60ke6mbHLRv95C62kY5sfAjBB3CAtEqB-bp2YhAeXCaFkR0YWYojZLJcEodSnm9ZL-fUVXYgJYYyklmhsxTekbAAiMmQhYFS72BzuGFIci-iLveOztvviNAxd2ux15a3M4Zj3nXezSrbj2dp94ftaZ-Hp5_mzeyvXH63uzWpdBap1LaeraOwItwaOtrTKbjiV1umLWRrP3HYGVzi_JVMZLhRsyFityXquu02omHk69MeXQJhcyu52Lw8AutwiE1XHoTNyfoMDM7WEMvR1_2vMl6g9x1VE8</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Dobbs, J. R.</creator><creator>Hencey, B. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20120101</creationdate><title>A comparison of thermal zone aggregation methods</title><author>Dobbs, J. R. ; Hencey, B. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i244t-2699fc80420f1a9a36bde28d45ee464effd80a2cf78656f231b86a158cf43dd43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atmospheric modeling</topic><topic>Buildings</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>geometric building information models</topic><topic>hierarchical cluster partitioning methods</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Object oriented modeling</topic><topic>Reduced order systems</topic><topic>Solid modeling</topic><topic>thermal zone aggregation-based model reduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Dobbs, J. R.</creatorcontrib><creatorcontrib>Hencey, B. M.</creatorcontrib><creatorcontrib>Cornell University, Ithaca, NY</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dobbs, J. R.</au><au>Hencey, B. M.</au><aucorp>Cornell University, Ithaca, NY</aucorp><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A comparison of thermal zone aggregation methods</atitle><btitle>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>6938</spage><epage>6944</epage><pages>6938-6944</pages><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><eisbn>1467320633</eisbn><eisbn>1467320668</eisbn><eisbn>9781467320634</eisbn><eisbn>9781467320665</eisbn><eisbn>9781467320641</eisbn><eisbn>1467320641</eisbn><abstract>The impact of increasing energy prices on building operation budgets has fueled demand for more energy-efficient structures. Existing building energy simulation tools generate an immense amount of data yet comparatively little knowledge. This paper introduces a framework that allows aggregation-based model reduction to operate on geometric building information models. The resulting aggregation sequence provides designers with faster simulations and affords insight into complex multi-scale thermal interactions. A comparison of the trade-off between simulation speed and accuracy for three hierarchical cluster partitioning methods concludes the discussion.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/CDC.2012.6425888</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.6938-6944 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_6425888 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Atmospheric modeling Buildings Capacitance Capacitors geometric building information models hierarchical cluster partitioning methods MATHEMATICS AND COMPUTING Object oriented modeling Reduced order systems Solid modeling thermal zone aggregation-based model reduction |
title | A comparison of thermal zone aggregation methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20comparison%20of%20thermal%20zone%20aggregation%20methods&rft.btitle=2012%20IEEE%2051st%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Dobbs,%20J.%20R.&rft.aucorp=Cornell%20University,%20Ithaca,%20NY&rft.date=2012-01-01&rft.spage=6938&rft.epage=6944&rft.pages=6938-6944&rft.issn=0191-2216&rft.isbn=9781467320658&rft.isbn_list=146732065X&rft_id=info:doi/10.1109/CDC.2012.6425888&rft_dat=%3Cieee_6IE%3E6425888%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467320633&rft.eisbn_list=1467320668&rft.eisbn_list=9781467320634&rft.eisbn_list=9781467320665&rft.eisbn_list=9781467320641&rft.eisbn_list=1467320641&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6425888&rfr_iscdi=true |