Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems

In this paper we propose an algorithm for constructing non-asymptotic confidence regions for parameters of general linear systems under mild statistical assumptions. The constructed regions are centered around the prediction error estimate and are guaranteed to contain the "true" parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Csaji, B. C., Campi, M. C., Weyer, E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7326
container_issue
container_start_page 7321
container_title
container_volume
creator Csaji, B. C.
Campi, M. C.
Weyer, E.
description In this paper we propose an algorithm for constructing non-asymptotic confidence regions for parameters of general linear systems under mild statistical assumptions. The constructed regions are centered around the prediction error estimate and are guaranteed to contain the "true" parameter with a user-chosen exact probability. Our main assumption is that the noise terms are independent and symmetrically distributed about zero, but they do not have to be stationary, nor do their variances and distributions have to be known. The construction of the region is based on the uniform ordering property of some carefully selected sign-perturbed sums (SPS) which, as we prove, rigorously guarantees the confidence probability for every finite dataset. The paper also investigates weighted estimates and presents a simulation example on an ARMA process that compares our exact confidence regions with the approximate ones based on the asymptotic theory.
doi_str_mv 10.1109/CDC.2012.6425882
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6425882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6425882</ieee_id><sourcerecordid>6425882</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-93cbc27061b5f846d42b0b8879704755588e0e5922da0bc0b9654f4bccb15ca23</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhCMq2NbeBS856mHrm2ySzXqT9RMKCtVzSbLvrpHdbUlSsf_eqvU0DDwzMEPIGYMZY1BeVbfVjAPjMyW41JofkDETqsg5qDw_JNOy0P9e6iMyAlayjHOmTsg4xg8A0KDUiHwufDtkawxpEyzWNG76SC8WL4vLa3pDe0zvq5o2q0DdaogpbFzyQ0vxy7hEGz_4hFk0_brDH6DxNQ4OacDW7_DfXIsDBtPRzg9oAo3bmLCPp-S4MV3E6V4n5O3-7rV6zObPD0_VzTzznBUpK3NnHS9AMSsbLVQtuAWrdVEWIAopd8sRUJac1wasA1sqKRphnbNMOsPzCTn_6_WIuFwH35uwXe4_y78BHAJesw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Csaji, B. C. ; Campi, M. C. ; Weyer, E.</creator><creatorcontrib>Csaji, B. C. ; Campi, M. C. ; Weyer, E.</creatorcontrib><description>In this paper we propose an algorithm for constructing non-asymptotic confidence regions for parameters of general linear systems under mild statistical assumptions. The constructed regions are centered around the prediction error estimate and are guaranteed to contain the "true" parameter with a user-chosen exact probability. Our main assumption is that the noise terms are independent and symmetrically distributed about zero, but they do not have to be stationary, nor do their variances and distributions have to be known. The construction of the region is based on the uniform ordering property of some carefully selected sign-perturbed sums (SPS) which, as we prove, rigorously guarantees the confidence probability for every finite dataset. The paper also investigates weighted estimates and presents a simulation example on an ARMA process that compares our exact confidence regions with the approximate ones based on the asymptotic theory.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781467320658</identifier><identifier>ISBN: 146732065X</identifier><identifier>EISBN: 1467320633</identifier><identifier>EISBN: 1467320668</identifier><identifier>EISBN: 9781467320634</identifier><identifier>EISBN: 9781467320665</identifier><identifier>EISBN: 9781467320641</identifier><identifier>EISBN: 1467320641</identifier><identifier>DOI: 10.1109/CDC.2012.6425882</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ellipsoids ; Linear systems ; Noise ; Random variables ; Silicon ; Weight measurement ; Yttrium</subject><ispartof>2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.7321-7326</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6425882$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6425882$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Csaji, B. C.</creatorcontrib><creatorcontrib>Campi, M. C.</creatorcontrib><creatorcontrib>Weyer, E.</creatorcontrib><title>Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems</title><title>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>In this paper we propose an algorithm for constructing non-asymptotic confidence regions for parameters of general linear systems under mild statistical assumptions. The constructed regions are centered around the prediction error estimate and are guaranteed to contain the "true" parameter with a user-chosen exact probability. Our main assumption is that the noise terms are independent and symmetrically distributed about zero, but they do not have to be stationary, nor do their variances and distributions have to be known. The construction of the region is based on the uniform ordering property of some carefully selected sign-perturbed sums (SPS) which, as we prove, rigorously guarantees the confidence probability for every finite dataset. The paper also investigates weighted estimates and presents a simulation example on an ARMA process that compares our exact confidence regions with the approximate ones based on the asymptotic theory.</description><subject>Ellipsoids</subject><subject>Linear systems</subject><subject>Noise</subject><subject>Random variables</subject><subject>Silicon</subject><subject>Weight measurement</subject><subject>Yttrium</subject><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><isbn>1467320633</isbn><isbn>1467320668</isbn><isbn>9781467320634</isbn><isbn>9781467320665</isbn><isbn>9781467320641</isbn><isbn>1467320641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1LAzEYhCMq2NbeBS856mHrm2ySzXqT9RMKCtVzSbLvrpHdbUlSsf_eqvU0DDwzMEPIGYMZY1BeVbfVjAPjMyW41JofkDETqsg5qDw_JNOy0P9e6iMyAlayjHOmTsg4xg8A0KDUiHwufDtkawxpEyzWNG76SC8WL4vLa3pDe0zvq5o2q0DdaogpbFzyQ0vxy7hEGz_4hFk0_brDH6DxNQ4OacDW7_DfXIsDBtPRzg9oAo3bmLCPp-S4MV3E6V4n5O3-7rV6zObPD0_VzTzznBUpK3NnHS9AMSsbLVQtuAWrdVEWIAopd8sRUJac1wasA1sqKRphnbNMOsPzCTn_6_WIuFwH35uwXe4_y78BHAJesw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Csaji, B. C.</creator><creator>Campi, M. C.</creator><creator>Weyer, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems</title><author>Csaji, B. C. ; Campi, M. C. ; Weyer, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-93cbc27061b5f846d42b0b8879704755588e0e5922da0bc0b9654f4bccb15ca23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ellipsoids</topic><topic>Linear systems</topic><topic>Noise</topic><topic>Random variables</topic><topic>Silicon</topic><topic>Weight measurement</topic><topic>Yttrium</topic><toplevel>online_resources</toplevel><creatorcontrib>Csaji, B. C.</creatorcontrib><creatorcontrib>Campi, M. C.</creatorcontrib><creatorcontrib>Weyer, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Csaji, B. C.</au><au>Campi, M. C.</au><au>Weyer, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems</atitle><btitle>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>7321</spage><epage>7326</epage><pages>7321-7326</pages><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><eisbn>1467320633</eisbn><eisbn>1467320668</eisbn><eisbn>9781467320634</eisbn><eisbn>9781467320665</eisbn><eisbn>9781467320641</eisbn><eisbn>1467320641</eisbn><abstract>In this paper we propose an algorithm for constructing non-asymptotic confidence regions for parameters of general linear systems under mild statistical assumptions. The constructed regions are centered around the prediction error estimate and are guaranteed to contain the "true" parameter with a user-chosen exact probability. Our main assumption is that the noise terms are independent and symmetrically distributed about zero, but they do not have to be stationary, nor do their variances and distributions have to be known. The construction of the region is based on the uniform ordering property of some carefully selected sign-perturbed sums (SPS) which, as we prove, rigorously guarantees the confidence probability for every finite dataset. The paper also investigates weighted estimates and presents a simulation example on an ARMA process that compares our exact confidence regions with the approximate ones based on the asymptotic theory.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2012.6425882</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.7321-7326
issn 0191-2216
language eng
recordid cdi_ieee_primary_6425882
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Ellipsoids
Linear systems
Noise
Random variables
Silicon
Weight measurement
Yttrium
title Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sign-perturbed%20sums%20(SPS):%20A%20method%20for%20constructing%20exact%20finite-sample%20confidence%20regions%20for%20general%20linear%20systems&rft.btitle=2012%20IEEE%2051st%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Csaji,%20B.%20C.&rft.date=2012-01-01&rft.spage=7321&rft.epage=7326&rft.pages=7321-7326&rft.issn=0191-2216&rft.isbn=9781467320658&rft.isbn_list=146732065X&rft_id=info:doi/10.1109/CDC.2012.6425882&rft_dat=%3Cieee_6IE%3E6425882%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467320633&rft.eisbn_list=1467320668&rft.eisbn_list=9781467320634&rft.eisbn_list=9781467320665&rft.eisbn_list=9781467320641&rft.eisbn_list=1467320641&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6425882&rfr_iscdi=true