Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems
In this paper we propose an algorithm for constructing non-asymptotic confidence regions for parameters of general linear systems under mild statistical assumptions. The constructed regions are centered around the prediction error estimate and are guaranteed to contain the "true" parameter...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7326 |
---|---|
container_issue | |
container_start_page | 7321 |
container_title | |
container_volume | |
creator | Csaji, B. C. Campi, M. C. Weyer, E. |
description | In this paper we propose an algorithm for constructing non-asymptotic confidence regions for parameters of general linear systems under mild statistical assumptions. The constructed regions are centered around the prediction error estimate and are guaranteed to contain the "true" parameter with a user-chosen exact probability. Our main assumption is that the noise terms are independent and symmetrically distributed about zero, but they do not have to be stationary, nor do their variances and distributions have to be known. The construction of the region is based on the uniform ordering property of some carefully selected sign-perturbed sums (SPS) which, as we prove, rigorously guarantees the confidence probability for every finite dataset. The paper also investigates weighted estimates and presents a simulation example on an ARMA process that compares our exact confidence regions with the approximate ones based on the asymptotic theory. |
doi_str_mv | 10.1109/CDC.2012.6425882 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6425882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6425882</ieee_id><sourcerecordid>6425882</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-93cbc27061b5f846d42b0b8879704755588e0e5922da0bc0b9654f4bccb15ca23</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhCMq2NbeBS856mHrm2ySzXqT9RMKCtVzSbLvrpHdbUlSsf_eqvU0DDwzMEPIGYMZY1BeVbfVjAPjMyW41JofkDETqsg5qDw_JNOy0P9e6iMyAlayjHOmTsg4xg8A0KDUiHwufDtkawxpEyzWNG76SC8WL4vLa3pDe0zvq5o2q0DdaogpbFzyQ0vxy7hEGz_4hFk0_brDH6DxNQ4OacDW7_DfXIsDBtPRzg9oAo3bmLCPp-S4MV3E6V4n5O3-7rV6zObPD0_VzTzznBUpK3NnHS9AMSsbLVQtuAWrdVEWIAopd8sRUJac1wasA1sqKRphnbNMOsPzCTn_6_WIuFwH35uwXe4_y78BHAJesw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Csaji, B. C. ; Campi, M. C. ; Weyer, E.</creator><creatorcontrib>Csaji, B. C. ; Campi, M. C. ; Weyer, E.</creatorcontrib><description>In this paper we propose an algorithm for constructing non-asymptotic confidence regions for parameters of general linear systems under mild statistical assumptions. The constructed regions are centered around the prediction error estimate and are guaranteed to contain the "true" parameter with a user-chosen exact probability. Our main assumption is that the noise terms are independent and symmetrically distributed about zero, but they do not have to be stationary, nor do their variances and distributions have to be known. The construction of the region is based on the uniform ordering property of some carefully selected sign-perturbed sums (SPS) which, as we prove, rigorously guarantees the confidence probability for every finite dataset. The paper also investigates weighted estimates and presents a simulation example on an ARMA process that compares our exact confidence regions with the approximate ones based on the asymptotic theory.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781467320658</identifier><identifier>ISBN: 146732065X</identifier><identifier>EISBN: 1467320633</identifier><identifier>EISBN: 1467320668</identifier><identifier>EISBN: 9781467320634</identifier><identifier>EISBN: 9781467320665</identifier><identifier>EISBN: 9781467320641</identifier><identifier>EISBN: 1467320641</identifier><identifier>DOI: 10.1109/CDC.2012.6425882</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ellipsoids ; Linear systems ; Noise ; Random variables ; Silicon ; Weight measurement ; Yttrium</subject><ispartof>2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.7321-7326</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6425882$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6425882$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Csaji, B. C.</creatorcontrib><creatorcontrib>Campi, M. C.</creatorcontrib><creatorcontrib>Weyer, E.</creatorcontrib><title>Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems</title><title>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>In this paper we propose an algorithm for constructing non-asymptotic confidence regions for parameters of general linear systems under mild statistical assumptions. The constructed regions are centered around the prediction error estimate and are guaranteed to contain the "true" parameter with a user-chosen exact probability. Our main assumption is that the noise terms are independent and symmetrically distributed about zero, but they do not have to be stationary, nor do their variances and distributions have to be known. The construction of the region is based on the uniform ordering property of some carefully selected sign-perturbed sums (SPS) which, as we prove, rigorously guarantees the confidence probability for every finite dataset. The paper also investigates weighted estimates and presents a simulation example on an ARMA process that compares our exact confidence regions with the approximate ones based on the asymptotic theory.</description><subject>Ellipsoids</subject><subject>Linear systems</subject><subject>Noise</subject><subject>Random variables</subject><subject>Silicon</subject><subject>Weight measurement</subject><subject>Yttrium</subject><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><isbn>1467320633</isbn><isbn>1467320668</isbn><isbn>9781467320634</isbn><isbn>9781467320665</isbn><isbn>9781467320641</isbn><isbn>1467320641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1LAzEYhCMq2NbeBS856mHrm2ySzXqT9RMKCtVzSbLvrpHdbUlSsf_eqvU0DDwzMEPIGYMZY1BeVbfVjAPjMyW41JofkDETqsg5qDw_JNOy0P9e6iMyAlayjHOmTsg4xg8A0KDUiHwufDtkawxpEyzWNG76SC8WL4vLa3pDe0zvq5o2q0DdaogpbFzyQ0vxy7hEGz_4hFk0_brDH6DxNQ4OacDW7_DfXIsDBtPRzg9oAo3bmLCPp-S4MV3E6V4n5O3-7rV6zObPD0_VzTzznBUpK3NnHS9AMSsbLVQtuAWrdVEWIAopd8sRUJac1wasA1sqKRphnbNMOsPzCTn_6_WIuFwH35uwXe4_y78BHAJesw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Csaji, B. C.</creator><creator>Campi, M. C.</creator><creator>Weyer, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems</title><author>Csaji, B. C. ; Campi, M. C. ; Weyer, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-93cbc27061b5f846d42b0b8879704755588e0e5922da0bc0b9654f4bccb15ca23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ellipsoids</topic><topic>Linear systems</topic><topic>Noise</topic><topic>Random variables</topic><topic>Silicon</topic><topic>Weight measurement</topic><topic>Yttrium</topic><toplevel>online_resources</toplevel><creatorcontrib>Csaji, B. C.</creatorcontrib><creatorcontrib>Campi, M. C.</creatorcontrib><creatorcontrib>Weyer, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Csaji, B. C.</au><au>Campi, M. C.</au><au>Weyer, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems</atitle><btitle>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>7321</spage><epage>7326</epage><pages>7321-7326</pages><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><eisbn>1467320633</eisbn><eisbn>1467320668</eisbn><eisbn>9781467320634</eisbn><eisbn>9781467320665</eisbn><eisbn>9781467320641</eisbn><eisbn>1467320641</eisbn><abstract>In this paper we propose an algorithm for constructing non-asymptotic confidence regions for parameters of general linear systems under mild statistical assumptions. The constructed regions are centered around the prediction error estimate and are guaranteed to contain the "true" parameter with a user-chosen exact probability. Our main assumption is that the noise terms are independent and symmetrically distributed about zero, but they do not have to be stationary, nor do their variances and distributions have to be known. The construction of the region is based on the uniform ordering property of some carefully selected sign-perturbed sums (SPS) which, as we prove, rigorously guarantees the confidence probability for every finite dataset. The paper also investigates weighted estimates and presents a simulation example on an ARMA process that compares our exact confidence regions with the approximate ones based on the asymptotic theory.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2012.6425882</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.7321-7326 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_6425882 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Ellipsoids Linear systems Noise Random variables Silicon Weight measurement Yttrium |
title | Sign-perturbed sums (SPS): A method for constructing exact finite-sample confidence regions for general linear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sign-perturbed%20sums%20(SPS):%20A%20method%20for%20constructing%20exact%20finite-sample%20confidence%20regions%20for%20general%20linear%20systems&rft.btitle=2012%20IEEE%2051st%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Csaji,%20B.%20C.&rft.date=2012-01-01&rft.spage=7321&rft.epage=7326&rft.pages=7321-7326&rft.issn=0191-2216&rft.isbn=9781467320658&rft.isbn_list=146732065X&rft_id=info:doi/10.1109/CDC.2012.6425882&rft_dat=%3Cieee_6IE%3E6425882%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467320633&rft.eisbn_list=1467320668&rft.eisbn_list=9781467320634&rft.eisbn_list=9781467320665&rft.eisbn_list=9781467320641&rft.eisbn_list=1467320641&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6425882&rfr_iscdi=true |