Content Mining of Microblogs

Emergence of Web 2.0, internet users can share their contents with other users using social networks. In this paper microbloggers' contents are evaluated with respect to how they reflect their categories. Migrobloggers' category information, which is one of the four categories that are eco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cingiz, M. O., Diri, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 838
container_issue
container_start_page 835
container_title
container_volume
creator Cingiz, M. O.
Diri, B.
description Emergence of Web 2.0, internet users can share their contents with other users using social networks. In this paper microbloggers' contents are evaluated with respect to how they reflect their categories. Migrobloggers' category information, which is one of the four categories that are economy sport, entertainment or technology, is taken from wefollow.com application. 2105 RSS news feeds, whose category labels are same with microbloggers' contributions, are used as training data for classification. In this study two types of users' contributions are taken as test data. These users are normal micro loggers and bots. Classification results show that bots provide more categorical content than normal users.
doi_str_mv 10.1109/ASONAM.2012.151
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6425656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6425656</ieee_id><sourcerecordid>6425656</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-418989d0e509ac38271adf21a6104f354f03e518bbf99a398435ccb84bc6eaad3</originalsourceid><addsrcrecordid>eNotjLFOwzAUAI0QEtBmZoChP5Dwnu1n-41RBAWppUNhrhzHroxKgpIs_D2VYDjdTSfEHUKFCPxY73dv9baSgLJCwgtxC9YwacsMl6Jg61Abq6Rma69FMU2fAICg6MyNeGiGfo79vNrmPvfH1ZDOFcahPQ3HaSmukj9Nsfj3Qnw8P703L-Vmt35t6k2Z0dJcanTsuINIwD4oJy36Lkn0BkEnRTqBioSubROzV-y0ohBap9tgovedWoj7v2-OMR6-x_zlx5-D0ZIMGfUL1Jc8cw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Content Mining of Microblogs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cingiz, M. O. ; Diri, B.</creator><creatorcontrib>Cingiz, M. O. ; Diri, B.</creatorcontrib><description>Emergence of Web 2.0, internet users can share their contents with other users using social networks. In this paper microbloggers' contents are evaluated with respect to how they reflect their categories. Migrobloggers' category information, which is one of the four categories that are economy sport, entertainment or technology, is taken from wefollow.com application. 2105 RSS news feeds, whose category labels are same with microbloggers' contributions, are used as training data for classification. In this study two types of users' contributions are taken as test data. These users are normal micro loggers and bots. Classification results show that bots provide more categorical content than normal users.</description><identifier>ISBN: 9781467324977</identifier><identifier>ISBN: 1467324973</identifier><identifier>EISBN: 0769547990</identifier><identifier>EISBN: 9780769547992</identifier><identifier>DOI: 10.1109/ASONAM.2012.151</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification ; content mining ; data mining ; Educational institutions ; Entertainment industry ; Feeds ; microblogging ; social web mining ; Support vector machine classification ; Text categorization ; Training</subject><ispartof>2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2012, p.835-838</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6425656$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6425656$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cingiz, M. O.</creatorcontrib><creatorcontrib>Diri, B.</creatorcontrib><title>Content Mining of Microblogs</title><title>2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining</title><addtitle>asonam</addtitle><description>Emergence of Web 2.0, internet users can share their contents with other users using social networks. In this paper microbloggers' contents are evaluated with respect to how they reflect their categories. Migrobloggers' category information, which is one of the four categories that are economy sport, entertainment or technology, is taken from wefollow.com application. 2105 RSS news feeds, whose category labels are same with microbloggers' contributions, are used as training data for classification. In this study two types of users' contributions are taken as test data. These users are normal micro loggers and bots. Classification results show that bots provide more categorical content than normal users.</description><subject>classification</subject><subject>content mining</subject><subject>data mining</subject><subject>Educational institutions</subject><subject>Entertainment industry</subject><subject>Feeds</subject><subject>microblogging</subject><subject>social web mining</subject><subject>Support vector machine classification</subject><subject>Text categorization</subject><subject>Training</subject><isbn>9781467324977</isbn><isbn>1467324973</isbn><isbn>0769547990</isbn><isbn>9780769547992</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLFOwzAUAI0QEtBmZoChP5Dwnu1n-41RBAWppUNhrhzHroxKgpIs_D2VYDjdTSfEHUKFCPxY73dv9baSgLJCwgtxC9YwacsMl6Jg61Abq6Rma69FMU2fAICg6MyNeGiGfo79vNrmPvfH1ZDOFcahPQ3HaSmukj9Nsfj3Qnw8P703L-Vmt35t6k2Z0dJcanTsuINIwD4oJy36Lkn0BkEnRTqBioSubROzV-y0ohBap9tgovedWoj7v2-OMR6-x_zlx5-D0ZIMGfUL1Jc8cw</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Cingiz, M. O.</creator><creator>Diri, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Content Mining of Microblogs</title><author>Cingiz, M. O. ; Diri, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-418989d0e509ac38271adf21a6104f354f03e518bbf99a398435ccb84bc6eaad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>classification</topic><topic>content mining</topic><topic>data mining</topic><topic>Educational institutions</topic><topic>Entertainment industry</topic><topic>Feeds</topic><topic>microblogging</topic><topic>social web mining</topic><topic>Support vector machine classification</topic><topic>Text categorization</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Cingiz, M. O.</creatorcontrib><creatorcontrib>Diri, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cingiz, M. O.</au><au>Diri, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Content Mining of Microblogs</atitle><btitle>2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining</btitle><stitle>asonam</stitle><date>2012-08</date><risdate>2012</risdate><spage>835</spage><epage>838</epage><pages>835-838</pages><isbn>9781467324977</isbn><isbn>1467324973</isbn><eisbn>0769547990</eisbn><eisbn>9780769547992</eisbn><coden>IEEPAD</coden><abstract>Emergence of Web 2.0, internet users can share their contents with other users using social networks. In this paper microbloggers' contents are evaluated with respect to how they reflect their categories. Migrobloggers' category information, which is one of the four categories that are economy sport, entertainment or technology, is taken from wefollow.com application. 2105 RSS news feeds, whose category labels are same with microbloggers' contributions, are used as training data for classification. In this study two types of users' contributions are taken as test data. These users are normal micro loggers and bots. Classification results show that bots provide more categorical content than normal users.</abstract><pub>IEEE</pub><doi>10.1109/ASONAM.2012.151</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467324977
ispartof 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2012, p.835-838
issn
language eng
recordid cdi_ieee_primary_6425656
source IEEE Electronic Library (IEL) Conference Proceedings
subjects classification
content mining
data mining
Educational institutions
Entertainment industry
Feeds
microblogging
social web mining
Support vector machine classification
Text categorization
Training
title Content Mining of Microblogs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Content%20Mining%20of%20Microblogs&rft.btitle=2012%20IEEE/ACM%20International%20Conference%20on%20Advances%20in%20Social%20Networks%20Analysis%20and%20Mining&rft.au=Cingiz,%20M.%20O.&rft.date=2012-08&rft.spage=835&rft.epage=838&rft.pages=835-838&rft.isbn=9781467324977&rft.isbn_list=1467324973&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ASONAM.2012.151&rft_dat=%3Cieee_6IE%3E6425656%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769547990&rft.eisbn_list=9780769547992&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6425656&rfr_iscdi=true