A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents
Text-line segmentation is considered as a crucial step of document analysis and recognition systems because its output is considered as the input of recognition systems. Due to the reason that the same handwritten image page has different characteristics, we propose in this paper a multilevel segmen...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 520 |
---|---|
container_issue | |
container_start_page | 515 |
container_title | |
container_volume | |
creator | Messaoud, I. B. Amiri, H. Abed, H. E. Margner, V. |
description | Text-line segmentation is considered as a crucial step of document analysis and recognition systems because its output is considered as the input of recognition systems. Due to the reason that the same handwritten image page has different characteristics, we propose in this paper a multilevel segmentation framework for handwritten historical documents. In this framework, one or many segmentation methods are selected according to the input document features. This framework is tested on the IAM historical database (60 images) and on images from the segmentation competition for handwritten document segmentation held at ICFHR 2010. The evaluation of the segmentation framework is based on several evaluation metrics. The tests show that the proposed framework gives promoting results. |
doi_str_mv | 10.1109/ICFHR.2012.159 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6424447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6424447</ieee_id><sourcerecordid>6424447</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9a41657f6873c379fa52af9e06fb9b504fdb0e0017e159c80e25345936a4da3f3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC2hSkDplg0b_0DK9TteVoGSSkFIpawrJ71GhjyQ41L697SC1SxG52iGkFsGc8bA3q-KZbmec2B8zpS9IDNrcia1EZxrzibk-lxZYSGXl2Q2jh8AcAINMLgi6wV93rcptPiNLd3gT8qq0CN9xfcO--RSGHq6jK7DwxA_qR8iLV2_O8SQEva0DGMaYmhcSx-GZn9Gxhsy8a4dcfafU_K2fNwUZVa9PK2KRZUFZlTKrJNMK-N1bkQjjPVOcectgva1rRVIv6sBT1MNnm41OSBXQiortJM7J7yYkrs_b0DE7VcMnYvHrZZcSmnEL3ExUEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Messaoud, I. B. ; Amiri, H. ; Abed, H. E. ; Margner, V.</creator><creatorcontrib>Messaoud, I. B. ; Amiri, H. ; Abed, H. E. ; Margner, V.</creatorcontrib><description>Text-line segmentation is considered as a crucial step of document analysis and recognition systems because its output is considered as the input of recognition systems. Due to the reason that the same handwritten image page has different characteristics, we propose in this paper a multilevel segmentation framework for handwritten historical documents. In this framework, one or many segmentation methods are selected according to the input document features. This framework is tested on the IAM historical database (60 images) and on images from the segmentation competition for handwritten document segmentation held at ICFHR 2010. The evaluation of the segmentation framework is based on several evaluation metrics. The tests show that the proposed framework gives promoting results.</description><identifier>ISBN: 9781467322621</identifier><identifier>ISBN: 1467322628</identifier><identifier>DOI: 10.1109/ICFHR.2012.159</identifier><identifier>LCCN: 2012939084</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; evaluation metrics ; Feature extraction ; Frequency modulation ; Image segmentation ; Mathematical model ; Measurement ; Silicon ; text line features ; Text line segmentation</subject><ispartof>2012 International Conference on Frontiers in Handwriting Recognition, 2012, p.515-520</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6424447$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6424447$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Messaoud, I. B.</creatorcontrib><creatorcontrib>Amiri, H.</creatorcontrib><creatorcontrib>Abed, H. E.</creatorcontrib><creatorcontrib>Margner, V.</creatorcontrib><title>A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents</title><title>2012 International Conference on Frontiers in Handwriting Recognition</title><addtitle>icfhr</addtitle><description>Text-line segmentation is considered as a crucial step of document analysis and recognition systems because its output is considered as the input of recognition systems. Due to the reason that the same handwritten image page has different characteristics, we propose in this paper a multilevel segmentation framework for handwritten historical documents. In this framework, one or many segmentation methods are selected according to the input document features. This framework is tested on the IAM historical database (60 images) and on images from the segmentation competition for handwritten document segmentation held at ICFHR 2010. The evaluation of the segmentation framework is based on several evaluation metrics. The tests show that the proposed framework gives promoting results.</description><subject>Equations</subject><subject>evaluation metrics</subject><subject>Feature extraction</subject><subject>Frequency modulation</subject><subject>Image segmentation</subject><subject>Mathematical model</subject><subject>Measurement</subject><subject>Silicon</subject><subject>text line features</subject><subject>Text line segmentation</subject><isbn>9781467322621</isbn><isbn>1467322628</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tOwzAURC2hSkDplg0b_0DK9TteVoGSSkFIpawrJ71GhjyQ41L697SC1SxG52iGkFsGc8bA3q-KZbmec2B8zpS9IDNrcia1EZxrzibk-lxZYSGXl2Q2jh8AcAINMLgi6wV93rcptPiNLd3gT8qq0CN9xfcO--RSGHq6jK7DwxA_qR8iLV2_O8SQEva0DGMaYmhcSx-GZn9Gxhsy8a4dcfafU_K2fNwUZVa9PK2KRZUFZlTKrJNMK-N1bkQjjPVOcectgva1rRVIv6sBT1MNnm41OSBXQiortJM7J7yYkrs_b0DE7VcMnYvHrZZcSmnEL3ExUEw</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Messaoud, I. B.</creator><creator>Amiri, H.</creator><creator>Abed, H. E.</creator><creator>Margner, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents</title><author>Messaoud, I. B. ; Amiri, H. ; Abed, H. E. ; Margner, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9a41657f6873c379fa52af9e06fb9b504fdb0e0017e159c80e25345936a4da3f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Equations</topic><topic>evaluation metrics</topic><topic>Feature extraction</topic><topic>Frequency modulation</topic><topic>Image segmentation</topic><topic>Mathematical model</topic><topic>Measurement</topic><topic>Silicon</topic><topic>text line features</topic><topic>Text line segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Messaoud, I. B.</creatorcontrib><creatorcontrib>Amiri, H.</creatorcontrib><creatorcontrib>Abed, H. E.</creatorcontrib><creatorcontrib>Margner, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Messaoud, I. B.</au><au>Amiri, H.</au><au>Abed, H. E.</au><au>Margner, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents</atitle><btitle>2012 International Conference on Frontiers in Handwriting Recognition</btitle><stitle>icfhr</stitle><date>2012-09</date><risdate>2012</risdate><spage>515</spage><epage>520</epage><pages>515-520</pages><isbn>9781467322621</isbn><isbn>1467322628</isbn><coden>IEEPAD</coden><abstract>Text-line segmentation is considered as a crucial step of document analysis and recognition systems because its output is considered as the input of recognition systems. Due to the reason that the same handwritten image page has different characteristics, we propose in this paper a multilevel segmentation framework for handwritten historical documents. In this framework, one or many segmentation methods are selected according to the input document features. This framework is tested on the IAM historical database (60 images) and on images from the segmentation competition for handwritten document segmentation held at ICFHR 2010. The evaluation of the segmentation framework is based on several evaluation metrics. The tests show that the proposed framework gives promoting results.</abstract><pub>IEEE</pub><doi>10.1109/ICFHR.2012.159</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467322621 |
ispartof | 2012 International Conference on Frontiers in Handwriting Recognition, 2012, p.515-520 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6424447 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Equations evaluation metrics Feature extraction Frequency modulation Image segmentation Mathematical model Measurement Silicon text line features Text line segmentation |
title | A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Multilevel%20Text-Line%20Segmentation%20Framework%20for%20Handwritten%20Historical%20Documents&rft.btitle=2012%20International%20Conference%20on%20Frontiers%20in%20Handwriting%20Recognition&rft.au=Messaoud,%20I.%20B.&rft.date=2012-09&rft.spage=515&rft.epage=520&rft.pages=515-520&rft.isbn=9781467322621&rft.isbn_list=1467322628&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICFHR.2012.159&rft_dat=%3Cieee_6IE%3E6424447%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6424447&rfr_iscdi=true |