A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents

Text-line segmentation is considered as a crucial step of document analysis and recognition systems because its output is considered as the input of recognition systems. Due to the reason that the same handwritten image page has different characteristics, we propose in this paper a multilevel segmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Messaoud, I. B., Amiri, H., Abed, H. E., Margner, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 520
container_issue
container_start_page 515
container_title
container_volume
creator Messaoud, I. B.
Amiri, H.
Abed, H. E.
Margner, V.
description Text-line segmentation is considered as a crucial step of document analysis and recognition systems because its output is considered as the input of recognition systems. Due to the reason that the same handwritten image page has different characteristics, we propose in this paper a multilevel segmentation framework for handwritten historical documents. In this framework, one or many segmentation methods are selected according to the input document features. This framework is tested on the IAM historical database (60 images) and on images from the segmentation competition for handwritten document segmentation held at ICFHR 2010. The evaluation of the segmentation framework is based on several evaluation metrics. The tests show that the proposed framework gives promoting results.
doi_str_mv 10.1109/ICFHR.2012.159
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6424447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6424447</ieee_id><sourcerecordid>6424447</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9a41657f6873c379fa52af9e06fb9b504fdb0e0017e159c80e25345936a4da3f3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC2hSkDplg0b_0DK9TteVoGSSkFIpawrJ71GhjyQ41L697SC1SxG52iGkFsGc8bA3q-KZbmec2B8zpS9IDNrcia1EZxrzibk-lxZYSGXl2Q2jh8AcAINMLgi6wV93rcptPiNLd3gT8qq0CN9xfcO--RSGHq6jK7DwxA_qR8iLV2_O8SQEva0DGMaYmhcSx-GZn9Gxhsy8a4dcfafU_K2fNwUZVa9PK2KRZUFZlTKrJNMK-N1bkQjjPVOcectgva1rRVIv6sBT1MNnm41OSBXQiortJM7J7yYkrs_b0DE7VcMnYvHrZZcSmnEL3ExUEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Messaoud, I. B. ; Amiri, H. ; Abed, H. E. ; Margner, V.</creator><creatorcontrib>Messaoud, I. B. ; Amiri, H. ; Abed, H. E. ; Margner, V.</creatorcontrib><description>Text-line segmentation is considered as a crucial step of document analysis and recognition systems because its output is considered as the input of recognition systems. Due to the reason that the same handwritten image page has different characteristics, we propose in this paper a multilevel segmentation framework for handwritten historical documents. In this framework, one or many segmentation methods are selected according to the input document features. This framework is tested on the IAM historical database (60 images) and on images from the segmentation competition for handwritten document segmentation held at ICFHR 2010. The evaluation of the segmentation framework is based on several evaluation metrics. The tests show that the proposed framework gives promoting results.</description><identifier>ISBN: 9781467322621</identifier><identifier>ISBN: 1467322628</identifier><identifier>DOI: 10.1109/ICFHR.2012.159</identifier><identifier>LCCN: 2012939084</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; evaluation metrics ; Feature extraction ; Frequency modulation ; Image segmentation ; Mathematical model ; Measurement ; Silicon ; text line features ; Text line segmentation</subject><ispartof>2012 International Conference on Frontiers in Handwriting Recognition, 2012, p.515-520</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6424447$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6424447$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Messaoud, I. B.</creatorcontrib><creatorcontrib>Amiri, H.</creatorcontrib><creatorcontrib>Abed, H. E.</creatorcontrib><creatorcontrib>Margner, V.</creatorcontrib><title>A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents</title><title>2012 International Conference on Frontiers in Handwriting Recognition</title><addtitle>icfhr</addtitle><description>Text-line segmentation is considered as a crucial step of document analysis and recognition systems because its output is considered as the input of recognition systems. Due to the reason that the same handwritten image page has different characteristics, we propose in this paper a multilevel segmentation framework for handwritten historical documents. In this framework, one or many segmentation methods are selected according to the input document features. This framework is tested on the IAM historical database (60 images) and on images from the segmentation competition for handwritten document segmentation held at ICFHR 2010. The evaluation of the segmentation framework is based on several evaluation metrics. The tests show that the proposed framework gives promoting results.</description><subject>Equations</subject><subject>evaluation metrics</subject><subject>Feature extraction</subject><subject>Frequency modulation</subject><subject>Image segmentation</subject><subject>Mathematical model</subject><subject>Measurement</subject><subject>Silicon</subject><subject>text line features</subject><subject>Text line segmentation</subject><isbn>9781467322621</isbn><isbn>1467322628</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tOwzAURC2hSkDplg0b_0DK9TteVoGSSkFIpawrJ71GhjyQ41L697SC1SxG52iGkFsGc8bA3q-KZbmec2B8zpS9IDNrcia1EZxrzibk-lxZYSGXl2Q2jh8AcAINMLgi6wV93rcptPiNLd3gT8qq0CN9xfcO--RSGHq6jK7DwxA_qR8iLV2_O8SQEva0DGMaYmhcSx-GZn9Gxhsy8a4dcfafU_K2fNwUZVa9PK2KRZUFZlTKrJNMK-N1bkQjjPVOcectgva1rRVIv6sBT1MNnm41OSBXQiortJM7J7yYkrs_b0DE7VcMnYvHrZZcSmnEL3ExUEw</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Messaoud, I. B.</creator><creator>Amiri, H.</creator><creator>Abed, H. E.</creator><creator>Margner, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents</title><author>Messaoud, I. B. ; Amiri, H. ; Abed, H. E. ; Margner, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9a41657f6873c379fa52af9e06fb9b504fdb0e0017e159c80e25345936a4da3f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Equations</topic><topic>evaluation metrics</topic><topic>Feature extraction</topic><topic>Frequency modulation</topic><topic>Image segmentation</topic><topic>Mathematical model</topic><topic>Measurement</topic><topic>Silicon</topic><topic>text line features</topic><topic>Text line segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Messaoud, I. B.</creatorcontrib><creatorcontrib>Amiri, H.</creatorcontrib><creatorcontrib>Abed, H. E.</creatorcontrib><creatorcontrib>Margner, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Messaoud, I. B.</au><au>Amiri, H.</au><au>Abed, H. E.</au><au>Margner, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents</atitle><btitle>2012 International Conference on Frontiers in Handwriting Recognition</btitle><stitle>icfhr</stitle><date>2012-09</date><risdate>2012</risdate><spage>515</spage><epage>520</epage><pages>515-520</pages><isbn>9781467322621</isbn><isbn>1467322628</isbn><coden>IEEPAD</coden><abstract>Text-line segmentation is considered as a crucial step of document analysis and recognition systems because its output is considered as the input of recognition systems. Due to the reason that the same handwritten image page has different characteristics, we propose in this paper a multilevel segmentation framework for handwritten historical documents. In this framework, one or many segmentation methods are selected according to the input document features. This framework is tested on the IAM historical database (60 images) and on images from the segmentation competition for handwritten document segmentation held at ICFHR 2010. The evaluation of the segmentation framework is based on several evaluation metrics. The tests show that the proposed framework gives promoting results.</abstract><pub>IEEE</pub><doi>10.1109/ICFHR.2012.159</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467322621
ispartof 2012 International Conference on Frontiers in Handwriting Recognition, 2012, p.515-520
issn
language eng
recordid cdi_ieee_primary_6424447
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
evaluation metrics
Feature extraction
Frequency modulation
Image segmentation
Mathematical model
Measurement
Silicon
text line features
Text line segmentation
title A Multilevel Text-Line Segmentation Framework for Handwritten Historical Documents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A06%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Multilevel%20Text-Line%20Segmentation%20Framework%20for%20Handwritten%20Historical%20Documents&rft.btitle=2012%20International%20Conference%20on%20Frontiers%20in%20Handwriting%20Recognition&rft.au=Messaoud,%20I.%20B.&rft.date=2012-09&rft.spage=515&rft.epage=520&rft.pages=515-520&rft.isbn=9781467322621&rft.isbn_list=1467322628&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICFHR.2012.159&rft_dat=%3Cieee_6IE%3E6424447%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6424447&rfr_iscdi=true