Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context

For robots to be able to fluidly collaborate with and keep company to humans in indoor spaces, they need to be able to perceive and understand such environments, including furniture and rooms. Towards that goal, we present a system for indoor furniture and room recognition for robots, which has two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Varvadoukas, T., Giannakidou, E., Gomez, J. V., Mavridis, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue
container_start_page 122
container_title
container_volume
creator Varvadoukas, T.
Giannakidou, E.
Gomez, J. V.
Mavridis, N.
description For robots to be able to fluidly collaborate with and keep company to humans in indoor spaces, they need to be able to perceive and understand such environments, including furniture and rooms. Towards that goal, we present a system for indoor furniture and room recognition for robots, which has two significant novelties: it utilizes internet-derived as well as self-captured models for training, and also uses object- and room-context information mined through the internet, in order to bootstrap and enhance its performance. Thus, the system also acts as an example of how autonomous robot entities can benefit from utilizing online information and services. Many interesting sub problems, including the peculiarities of utilizing such online sources, are discussed, followed by a real world empirical evaluation of the system, which shows highly promising results.
doi_str_mv 10.1109/FIT.2012.30
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6424309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6424309</ieee_id><sourcerecordid>6424309</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d6be0d09ad4bb4d472827b0ab10004268f2daed99670c671d1a24a6a85402d5d3</originalsourceid><addsrcrecordid>eNotjkFLAzEUhCMiKLUnj17yB7a-ZN8mm6NUqwuVQmnPJWleS0qbSDYV_fcu1dMwwzfDMPYgYCIEmKdZt5pIEHJSwxUbG92CVqZBI7W5vniBStdoULW3bNz3BwAQUDeA8o65LvqUMp-dcwzlnInb6PkypRNf0jbthzCkyHcDYofYpcLXfYh73sVCOVKpXiiHL_L8I3k69pf6wh1oW_g0Dcx3uWc3O3vsafyvI7aeva6m79V88dZNn-dVELoplVeOwIOxHp1Dj1q2UjuwTgx_Uap2J70lb4zSsFVaeGElWmXbBkH6xtcj9vi3G4ho85nDyeafjUKJNZj6FxJAVYw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Varvadoukas, T. ; Giannakidou, E. ; Gomez, J. V. ; Mavridis, N.</creator><creatorcontrib>Varvadoukas, T. ; Giannakidou, E. ; Gomez, J. V. ; Mavridis, N.</creatorcontrib><description>For robots to be able to fluidly collaborate with and keep company to humans in indoor spaces, they need to be able to perceive and understand such environments, including furniture and rooms. Towards that goal, we present a system for indoor furniture and room recognition for robots, which has two significant novelties: it utilizes internet-derived as well as self-captured models for training, and also uses object- and room-context information mined through the internet, in order to bootstrap and enhance its performance. Thus, the system also acts as an example of how autonomous robot entities can benefit from utilizing online information and services. Many interesting sub problems, including the peculiarities of utilizing such online sources, are discussed, followed by a real world empirical evaluation of the system, which shows highly promising results.</description><identifier>ISBN: 9781467349468</identifier><identifier>ISBN: 1467349461</identifier><identifier>EISBN: 9780769549279</identifier><identifier>EISBN: 0769549276</identifier><identifier>DOI: 10.1109/FIT.2012.30</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Context ; Data models ; Indoor environments ; Kinect ; Object Context ; Object recognition ; Robotics ; Robots ; Solid modeling ; Vision</subject><ispartof>2012 10th International Conference on Frontiers of Information Technology, 2012, p.122-128</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6424309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6424309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Varvadoukas, T.</creatorcontrib><creatorcontrib>Giannakidou, E.</creatorcontrib><creatorcontrib>Gomez, J. V.</creatorcontrib><creatorcontrib>Mavridis, N.</creatorcontrib><title>Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context</title><title>2012 10th International Conference on Frontiers of Information Technology</title><addtitle>fit</addtitle><description>For robots to be able to fluidly collaborate with and keep company to humans in indoor spaces, they need to be able to perceive and understand such environments, including furniture and rooms. Towards that goal, we present a system for indoor furniture and room recognition for robots, which has two significant novelties: it utilizes internet-derived as well as self-captured models for training, and also uses object- and room-context information mined through the internet, in order to bootstrap and enhance its performance. Thus, the system also acts as an example of how autonomous robot entities can benefit from utilizing online information and services. Many interesting sub problems, including the peculiarities of utilizing such online sources, are discussed, followed by a real world empirical evaluation of the system, which shows highly promising results.</description><subject>Context</subject><subject>Data models</subject><subject>Indoor environments</subject><subject>Kinect</subject><subject>Object Context</subject><subject>Object recognition</subject><subject>Robotics</subject><subject>Robots</subject><subject>Solid modeling</subject><subject>Vision</subject><isbn>9781467349468</isbn><isbn>1467349461</isbn><isbn>9780769549279</isbn><isbn>0769549276</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjkFLAzEUhCMiKLUnj17yB7a-ZN8mm6NUqwuVQmnPJWleS0qbSDYV_fcu1dMwwzfDMPYgYCIEmKdZt5pIEHJSwxUbG92CVqZBI7W5vniBStdoULW3bNz3BwAQUDeA8o65LvqUMp-dcwzlnInb6PkypRNf0jbthzCkyHcDYofYpcLXfYh73sVCOVKpXiiHL_L8I3k69pf6wh1oW_g0Dcx3uWc3O3vsafyvI7aeva6m79V88dZNn-dVELoplVeOwIOxHp1Dj1q2UjuwTgx_Uap2J70lb4zSsFVaeGElWmXbBkH6xtcj9vi3G4ho85nDyeafjUKJNZj6FxJAVYw</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Varvadoukas, T.</creator><creator>Giannakidou, E.</creator><creator>Gomez, J. V.</creator><creator>Mavridis, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context</title><author>Varvadoukas, T. ; Giannakidou, E. ; Gomez, J. V. ; Mavridis, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d6be0d09ad4bb4d472827b0ab10004268f2daed99670c671d1a24a6a85402d5d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Context</topic><topic>Data models</topic><topic>Indoor environments</topic><topic>Kinect</topic><topic>Object Context</topic><topic>Object recognition</topic><topic>Robotics</topic><topic>Robots</topic><topic>Solid modeling</topic><topic>Vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Varvadoukas, T.</creatorcontrib><creatorcontrib>Giannakidou, E.</creatorcontrib><creatorcontrib>Gomez, J. V.</creatorcontrib><creatorcontrib>Mavridis, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varvadoukas, T.</au><au>Giannakidou, E.</au><au>Gomez, J. V.</au><au>Mavridis, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context</atitle><btitle>2012 10th International Conference on Frontiers of Information Technology</btitle><stitle>fit</stitle><date>2012-12</date><risdate>2012</risdate><spage>122</spage><epage>128</epage><pages>122-128</pages><isbn>9781467349468</isbn><isbn>1467349461</isbn><eisbn>9780769549279</eisbn><eisbn>0769549276</eisbn><coden>IEEPAD</coden><abstract>For robots to be able to fluidly collaborate with and keep company to humans in indoor spaces, they need to be able to perceive and understand such environments, including furniture and rooms. Towards that goal, we present a system for indoor furniture and room recognition for robots, which has two significant novelties: it utilizes internet-derived as well as self-captured models for training, and also uses object- and room-context information mined through the internet, in order to bootstrap and enhance its performance. Thus, the system also acts as an example of how autonomous robot entities can benefit from utilizing online information and services. Many interesting sub problems, including the peculiarities of utilizing such online sources, are discussed, followed by a real world empirical evaluation of the system, which shows highly promising results.</abstract><pub>IEEE</pub><doi>10.1109/FIT.2012.30</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467349468
ispartof 2012 10th International Conference on Frontiers of Information Technology, 2012, p.122-128
issn
language eng
recordid cdi_ieee_primary_6424309
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Context
Data models
Indoor environments
Kinect
Object Context
Object recognition
Robotics
Robots
Solid modeling
Vision
title Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Indoor%20Furniture%20and%20Room%20Recognition%20for%20a%20Robot%20Using%20Internet-Derived%20Models%20and%20Object%20Context&rft.btitle=2012%2010th%20International%20Conference%20on%20Frontiers%20of%20Information%20Technology&rft.au=Varvadoukas,%20T.&rft.date=2012-12&rft.spage=122&rft.epage=128&rft.pages=122-128&rft.isbn=9781467349468&rft.isbn_list=1467349461&rft.coden=IEEPAD&rft_id=info:doi/10.1109/FIT.2012.30&rft_dat=%3Cieee_6IE%3E6424309%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549279&rft.eisbn_list=0769549276&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6424309&rfr_iscdi=true