Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context
For robots to be able to fluidly collaborate with and keep company to humans in indoor spaces, they need to be able to perceive and understand such environments, including furniture and rooms. Towards that goal, we present a system for indoor furniture and room recognition for robots, which has two...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | |
container_start_page | 122 |
container_title | |
container_volume | |
creator | Varvadoukas, T. Giannakidou, E. Gomez, J. V. Mavridis, N. |
description | For robots to be able to fluidly collaborate with and keep company to humans in indoor spaces, they need to be able to perceive and understand such environments, including furniture and rooms. Towards that goal, we present a system for indoor furniture and room recognition for robots, which has two significant novelties: it utilizes internet-derived as well as self-captured models for training, and also uses object- and room-context information mined through the internet, in order to bootstrap and enhance its performance. Thus, the system also acts as an example of how autonomous robot entities can benefit from utilizing online information and services. Many interesting sub problems, including the peculiarities of utilizing such online sources, are discussed, followed by a real world empirical evaluation of the system, which shows highly promising results. |
doi_str_mv | 10.1109/FIT.2012.30 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6424309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6424309</ieee_id><sourcerecordid>6424309</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d6be0d09ad4bb4d472827b0ab10004268f2daed99670c671d1a24a6a85402d5d3</originalsourceid><addsrcrecordid>eNotjkFLAzEUhCMiKLUnj17yB7a-ZN8mm6NUqwuVQmnPJWleS0qbSDYV_fcu1dMwwzfDMPYgYCIEmKdZt5pIEHJSwxUbG92CVqZBI7W5vniBStdoULW3bNz3BwAQUDeA8o65LvqUMp-dcwzlnInb6PkypRNf0jbthzCkyHcDYofYpcLXfYh73sVCOVKpXiiHL_L8I3k69pf6wh1oW_g0Dcx3uWc3O3vsafyvI7aeva6m79V88dZNn-dVELoplVeOwIOxHp1Dj1q2UjuwTgx_Uap2J70lb4zSsFVaeGElWmXbBkH6xtcj9vi3G4ho85nDyeafjUKJNZj6FxJAVYw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Varvadoukas, T. ; Giannakidou, E. ; Gomez, J. V. ; Mavridis, N.</creator><creatorcontrib>Varvadoukas, T. ; Giannakidou, E. ; Gomez, J. V. ; Mavridis, N.</creatorcontrib><description>For robots to be able to fluidly collaborate with and keep company to humans in indoor spaces, they need to be able to perceive and understand such environments, including furniture and rooms. Towards that goal, we present a system for indoor furniture and room recognition for robots, which has two significant novelties: it utilizes internet-derived as well as self-captured models for training, and also uses object- and room-context information mined through the internet, in order to bootstrap and enhance its performance. Thus, the system also acts as an example of how autonomous robot entities can benefit from utilizing online information and services. Many interesting sub problems, including the peculiarities of utilizing such online sources, are discussed, followed by a real world empirical evaluation of the system, which shows highly promising results.</description><identifier>ISBN: 9781467349468</identifier><identifier>ISBN: 1467349461</identifier><identifier>EISBN: 9780769549279</identifier><identifier>EISBN: 0769549276</identifier><identifier>DOI: 10.1109/FIT.2012.30</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Context ; Data models ; Indoor environments ; Kinect ; Object Context ; Object recognition ; Robotics ; Robots ; Solid modeling ; Vision</subject><ispartof>2012 10th International Conference on Frontiers of Information Technology, 2012, p.122-128</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6424309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6424309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Varvadoukas, T.</creatorcontrib><creatorcontrib>Giannakidou, E.</creatorcontrib><creatorcontrib>Gomez, J. V.</creatorcontrib><creatorcontrib>Mavridis, N.</creatorcontrib><title>Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context</title><title>2012 10th International Conference on Frontiers of Information Technology</title><addtitle>fit</addtitle><description>For robots to be able to fluidly collaborate with and keep company to humans in indoor spaces, they need to be able to perceive and understand such environments, including furniture and rooms. Towards that goal, we present a system for indoor furniture and room recognition for robots, which has two significant novelties: it utilizes internet-derived as well as self-captured models for training, and also uses object- and room-context information mined through the internet, in order to bootstrap and enhance its performance. Thus, the system also acts as an example of how autonomous robot entities can benefit from utilizing online information and services. Many interesting sub problems, including the peculiarities of utilizing such online sources, are discussed, followed by a real world empirical evaluation of the system, which shows highly promising results.</description><subject>Context</subject><subject>Data models</subject><subject>Indoor environments</subject><subject>Kinect</subject><subject>Object Context</subject><subject>Object recognition</subject><subject>Robotics</subject><subject>Robots</subject><subject>Solid modeling</subject><subject>Vision</subject><isbn>9781467349468</isbn><isbn>1467349461</isbn><isbn>9780769549279</isbn><isbn>0769549276</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjkFLAzEUhCMiKLUnj17yB7a-ZN8mm6NUqwuVQmnPJWleS0qbSDYV_fcu1dMwwzfDMPYgYCIEmKdZt5pIEHJSwxUbG92CVqZBI7W5vniBStdoULW3bNz3BwAQUDeA8o65LvqUMp-dcwzlnInb6PkypRNf0jbthzCkyHcDYofYpcLXfYh73sVCOVKpXiiHL_L8I3k69pf6wh1oW_g0Dcx3uWc3O3vsafyvI7aeva6m79V88dZNn-dVELoplVeOwIOxHp1Dj1q2UjuwTgx_Uap2J70lb4zSsFVaeGElWmXbBkH6xtcj9vi3G4ho85nDyeafjUKJNZj6FxJAVYw</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Varvadoukas, T.</creator><creator>Giannakidou, E.</creator><creator>Gomez, J. V.</creator><creator>Mavridis, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context</title><author>Varvadoukas, T. ; Giannakidou, E. ; Gomez, J. V. ; Mavridis, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d6be0d09ad4bb4d472827b0ab10004268f2daed99670c671d1a24a6a85402d5d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Context</topic><topic>Data models</topic><topic>Indoor environments</topic><topic>Kinect</topic><topic>Object Context</topic><topic>Object recognition</topic><topic>Robotics</topic><topic>Robots</topic><topic>Solid modeling</topic><topic>Vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Varvadoukas, T.</creatorcontrib><creatorcontrib>Giannakidou, E.</creatorcontrib><creatorcontrib>Gomez, J. V.</creatorcontrib><creatorcontrib>Mavridis, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varvadoukas, T.</au><au>Giannakidou, E.</au><au>Gomez, J. V.</au><au>Mavridis, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context</atitle><btitle>2012 10th International Conference on Frontiers of Information Technology</btitle><stitle>fit</stitle><date>2012-12</date><risdate>2012</risdate><spage>122</spage><epage>128</epage><pages>122-128</pages><isbn>9781467349468</isbn><isbn>1467349461</isbn><eisbn>9780769549279</eisbn><eisbn>0769549276</eisbn><coden>IEEPAD</coden><abstract>For robots to be able to fluidly collaborate with and keep company to humans in indoor spaces, they need to be able to perceive and understand such environments, including furniture and rooms. Towards that goal, we present a system for indoor furniture and room recognition for robots, which has two significant novelties: it utilizes internet-derived as well as self-captured models for training, and also uses object- and room-context information mined through the internet, in order to bootstrap and enhance its performance. Thus, the system also acts as an example of how autonomous robot entities can benefit from utilizing online information and services. Many interesting sub problems, including the peculiarities of utilizing such online sources, are discussed, followed by a real world empirical evaluation of the system, which shows highly promising results.</abstract><pub>IEEE</pub><doi>10.1109/FIT.2012.30</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467349468 |
ispartof | 2012 10th International Conference on Frontiers of Information Technology, 2012, p.122-128 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6424309 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Context Data models Indoor environments Kinect Object Context Object recognition Robotics Robots Solid modeling Vision |
title | Indoor Furniture and Room Recognition for a Robot Using Internet-Derived Models and Object Context |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Indoor%20Furniture%20and%20Room%20Recognition%20for%20a%20Robot%20Using%20Internet-Derived%20Models%20and%20Object%20Context&rft.btitle=2012%2010th%20International%20Conference%20on%20Frontiers%20of%20Information%20Technology&rft.au=Varvadoukas,%20T.&rft.date=2012-12&rft.spage=122&rft.epage=128&rft.pages=122-128&rft.isbn=9781467349468&rft.isbn_list=1467349461&rft.coden=IEEPAD&rft_id=info:doi/10.1109/FIT.2012.30&rft_dat=%3Cieee_6IE%3E6424309%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549279&rft.eisbn_list=0769549276&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6424309&rfr_iscdi=true |