Opinion mining and sentiment analysis on a Twitter data stream

Opinion mining and sentiment analysis is a fast growing topic with various world applications, from polls to advertisement placement. Traditionally individuals gather feedback from their friends or relatives before purchasing an item, but today the trend is to identify the opinions of a variety of i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gokulakrishnan, B., Priyanthan, P., Ragavan, T., Prasath, N., Perera, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue
container_start_page 182
container_title
container_volume
creator Gokulakrishnan, B.
Priyanthan, P.
Ragavan, T.
Prasath, N.
Perera, A.
description Opinion mining and sentiment analysis is a fast growing topic with various world applications, from polls to advertisement placement. Traditionally individuals gather feedback from their friends or relatives before purchasing an item, but today the trend is to identify the opinions of a variety of individuals around the globe using microblogging data. This paper discusses an approach where a publicised stream of tweets from the Twitter microblogging site are preprocessed and classified based on their emotional content as positive, negative and irrelevant; and analyses the performance of various classifying algorithms based on their precision and recall in such cases. Further, the paper exemplifies the applications of this research and its limitations.
doi_str_mv 10.1109/ICTer.2012.6423033
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6423033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6423033</ieee_id><sourcerecordid>6423033</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3ba4df4568748e4c2b1bf51101bb392defecbbf41a0c2942aa222d5e61b21b1e3</originalsourceid><addsrcrecordid>eNpFT9tKxDAUjIigrvsD-pIfaM05SXp5EaR4WVjYl_q8nLSnEtnGpQnI_r0BF3yZYWBmmBHiHlQJoNrHTdfzUqICLCuDWml9IW7BVLW2Fht9-S9auBbrGL-UUjlZocIb8bQ7-uC_g5wzhU9JYZSRQ_JzhqzocIo-ymwg2f_4lHiRIyWSMS1M8524mugQeX3mlfh4fem792K7e9t0z9vCQ21ToR2ZcTK2amrTsBnQgZtsHgHO6RZHnnhwbjJAasDWIBEijpYrcAgOWK_Ew1-vZ-b9cfEzLaf9-a_-Bf_TSeI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Opinion mining and sentiment analysis on a Twitter data stream</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gokulakrishnan, B. ; Priyanthan, P. ; Ragavan, T. ; Prasath, N. ; Perera, A.</creator><creatorcontrib>Gokulakrishnan, B. ; Priyanthan, P. ; Ragavan, T. ; Prasath, N. ; Perera, A.</creatorcontrib><description>Opinion mining and sentiment analysis is a fast growing topic with various world applications, from polls to advertisement placement. Traditionally individuals gather feedback from their friends or relatives before purchasing an item, but today the trend is to identify the opinions of a variety of individuals around the globe using microblogging data. This paper discusses an approach where a publicised stream of tweets from the Twitter microblogging site are preprocessed and classified based on their emotional content as positive, negative and irrelevant; and analyses the performance of various classifying algorithms based on their precision and recall in such cases. Further, the paper exemplifies the applications of this research and its limitations.</description><identifier>ISBN: 1467355291</identifier><identifier>ISBN: 9781467355292</identifier><identifier>EISBN: 1467355283</identifier><identifier>EISBN: 9781467355308</identifier><identifier>EISBN: 9781467355285</identifier><identifier>EISBN: 1467355305</identifier><identifier>DOI: 10.1109/ICTer.2012.6423033</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification algorithms ; Data mining ; Data preprocessing ; Machine learning ; Niobium ; Support vector machines ; Twitter</subject><ispartof>International Conference on Advances in ICT for Emerging Regions (ICTer2012), 2012, p.182-188</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6423033$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6423033$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gokulakrishnan, B.</creatorcontrib><creatorcontrib>Priyanthan, P.</creatorcontrib><creatorcontrib>Ragavan, T.</creatorcontrib><creatorcontrib>Prasath, N.</creatorcontrib><creatorcontrib>Perera, A.</creatorcontrib><title>Opinion mining and sentiment analysis on a Twitter data stream</title><title>International Conference on Advances in ICT for Emerging Regions (ICTer2012)</title><addtitle>ICTer</addtitle><description>Opinion mining and sentiment analysis is a fast growing topic with various world applications, from polls to advertisement placement. Traditionally individuals gather feedback from their friends or relatives before purchasing an item, but today the trend is to identify the opinions of a variety of individuals around the globe using microblogging data. This paper discusses an approach where a publicised stream of tweets from the Twitter microblogging site are preprocessed and classified based on their emotional content as positive, negative and irrelevant; and analyses the performance of various classifying algorithms based on their precision and recall in such cases. Further, the paper exemplifies the applications of this research and its limitations.</description><subject>Accuracy</subject><subject>Classification algorithms</subject><subject>Data mining</subject><subject>Data preprocessing</subject><subject>Machine learning</subject><subject>Niobium</subject><subject>Support vector machines</subject><subject>Twitter</subject><isbn>1467355291</isbn><isbn>9781467355292</isbn><isbn>1467355283</isbn><isbn>9781467355308</isbn><isbn>9781467355285</isbn><isbn>1467355305</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT9tKxDAUjIigrvsD-pIfaM05SXp5EaR4WVjYl_q8nLSnEtnGpQnI_r0BF3yZYWBmmBHiHlQJoNrHTdfzUqICLCuDWml9IW7BVLW2Fht9-S9auBbrGL-UUjlZocIb8bQ7-uC_g5wzhU9JYZSRQ_JzhqzocIo-ymwg2f_4lHiRIyWSMS1M8524mugQeX3mlfh4fem792K7e9t0z9vCQ21ToR2ZcTK2amrTsBnQgZtsHgHO6RZHnnhwbjJAasDWIBEijpYrcAgOWK_Ew1-vZ-b9cfEzLaf9-a_-Bf_TSeI</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Gokulakrishnan, B.</creator><creator>Priyanthan, P.</creator><creator>Ragavan, T.</creator><creator>Prasath, N.</creator><creator>Perera, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Opinion mining and sentiment analysis on a Twitter data stream</title><author>Gokulakrishnan, B. ; Priyanthan, P. ; Ragavan, T. ; Prasath, N. ; Perera, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3ba4df4568748e4c2b1bf51101bb392defecbbf41a0c2942aa222d5e61b21b1e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Classification algorithms</topic><topic>Data mining</topic><topic>Data preprocessing</topic><topic>Machine learning</topic><topic>Niobium</topic><topic>Support vector machines</topic><topic>Twitter</topic><toplevel>online_resources</toplevel><creatorcontrib>Gokulakrishnan, B.</creatorcontrib><creatorcontrib>Priyanthan, P.</creatorcontrib><creatorcontrib>Ragavan, T.</creatorcontrib><creatorcontrib>Prasath, N.</creatorcontrib><creatorcontrib>Perera, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gokulakrishnan, B.</au><au>Priyanthan, P.</au><au>Ragavan, T.</au><au>Prasath, N.</au><au>Perera, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Opinion mining and sentiment analysis on a Twitter data stream</atitle><btitle>International Conference on Advances in ICT for Emerging Regions (ICTer2012)</btitle><stitle>ICTer</stitle><date>2012-12</date><risdate>2012</risdate><spage>182</spage><epage>188</epage><pages>182-188</pages><isbn>1467355291</isbn><isbn>9781467355292</isbn><eisbn>1467355283</eisbn><eisbn>9781467355308</eisbn><eisbn>9781467355285</eisbn><eisbn>1467355305</eisbn><abstract>Opinion mining and sentiment analysis is a fast growing topic with various world applications, from polls to advertisement placement. Traditionally individuals gather feedback from their friends or relatives before purchasing an item, but today the trend is to identify the opinions of a variety of individuals around the globe using microblogging data. This paper discusses an approach where a publicised stream of tweets from the Twitter microblogging site are preprocessed and classified based on their emotional content as positive, negative and irrelevant; and analyses the performance of various classifying algorithms based on their precision and recall in such cases. Further, the paper exemplifies the applications of this research and its limitations.</abstract><pub>IEEE</pub><doi>10.1109/ICTer.2012.6423033</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467355291
ispartof International Conference on Advances in ICT for Emerging Regions (ICTer2012), 2012, p.182-188
issn
language eng
recordid cdi_ieee_primary_6423033
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Classification algorithms
Data mining
Data preprocessing
Machine learning
Niobium
Support vector machines
Twitter
title Opinion mining and sentiment analysis on a Twitter data stream
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Opinion%20mining%20and%20sentiment%20analysis%20on%20a%20Twitter%20data%20stream&rft.btitle=International%20Conference%20on%20Advances%20in%20ICT%20for%20Emerging%20Regions%20(ICTer2012)&rft.au=Gokulakrishnan,%20B.&rft.date=2012-12&rft.spage=182&rft.epage=188&rft.pages=182-188&rft.isbn=1467355291&rft.isbn_list=9781467355292&rft_id=info:doi/10.1109/ICTer.2012.6423033&rft_dat=%3Cieee_6IE%3E6423033%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467355283&rft.eisbn_list=9781467355308&rft.eisbn_list=9781467355285&rft.eisbn_list=1467355305&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6423033&rfr_iscdi=true