Low complexity spectral analysis of heart-rate-variability through a wavelet based FFT

In this paper, a low complexity system for spectral analysis of heart rate variability (HRV) is presented. The main idea of the proposed approach is the implementation of the Fast-Lomb periodogram that is a ubiquitous tool in spectral analysis, using a wavelet based Fast Fourier transform. Interesti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karakonstantis, G., Sankaranarayanan, A., Burg, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue
container_start_page 285
container_title
container_volume
creator Karakonstantis, G.
Sankaranarayanan, A.
Burg, A.
description In this paper, a low complexity system for spectral analysis of heart rate variability (HRV) is presented. The main idea of the proposed approach is the implementation of the Fast-Lomb periodogram that is a ubiquitous tool in spectral analysis, using a wavelet based Fast Fourier transform. Interestingly we show that the proposed approach enables the classification of processed data into more and less significant based on their contribution to output quality. Based on such a classification a percentage of less-significant data is being pruned leading to a significant reduction of algorithmic complexity with minimal quality degradation. Indeed, our results indicate that the proposed system can achieve up-to 45% reduction in number of computations with only 4.9% average error in the output quality compared to a conventional FFT based HRV system.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6420386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6420386</ieee_id><sourcerecordid>6420386</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e3a2a68bca094e11eba8e786f4fba9062135f14c58b0baddb7b29844583be01f3</originalsourceid><addsrcrecordid>eNo1jMtKAzEUQOMLbGu_wE1-IJD3YynFUWHATXVbbqZ3bGTqlCS2zt-LqKuzOIdzRpbBeaGtU5I7487JTCppmPdGXZD5v7Dmksy4dJZZ4_Q1mZfyzrkIwZkZeW3HE-3G_WHAr1QnWg7Y1QwDhQ8YppIKHXu6Q8iVZajIjpATxDT8tHWXx8-3HQV6giMOWGmEglvaNOsbctXDUHD5xwV5ae7Xq0fWPj88re5aloQzlaECCdbHDnjQKARG8Oi87XUfIXArhTK90J3xkUfYbqOLMnitjVcRuejVgtz-fhMibg457SFPG6slV96qb6JlUPw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low complexity spectral analysis of heart-rate-variability through a wavelet based FFT</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karakonstantis, G. ; Sankaranarayanan, A. ; Burg, A.</creator><creatorcontrib>Karakonstantis, G. ; Sankaranarayanan, A. ; Burg, A.</creatorcontrib><description>In this paper, a low complexity system for spectral analysis of heart rate variability (HRV) is presented. The main idea of the proposed approach is the implementation of the Fast-Lomb periodogram that is a ubiquitous tool in spectral analysis, using a wavelet based Fast Fourier transform. Interestingly we show that the proposed approach enables the classification of processed data into more and less significant based on their contribution to output quality. Based on such a classification a percentage of less-significant data is being pruned leading to a significant reduction of algorithmic complexity with minimal quality degradation. Indeed, our results indicate that the proposed system can achieve up-to 45% reduction in number of computations with only 4.9% average error in the output quality compared to a conventional FFT based HRV system.</description><identifier>ISSN: 0276-6574</identifier><identifier>ISBN: 1467320765</identifier><identifier>ISBN: 9781467320764</identifier><identifier>EISSN: 2325-8853</identifier><identifier>EISBN: 9781467320757</identifier><identifier>EISBN: 9781467320771</identifier><identifier>EISBN: 1467320757</identifier><identifier>EISBN: 1467320773</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Approximation methods ; Complexity theory ; Discrete wavelet transforms ; Heart rate variability ; Kernel ; Spectral analysis</subject><ispartof>2012 Computing in Cardiology, 2012, p.285-288</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6420386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6420386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karakonstantis, G.</creatorcontrib><creatorcontrib>Sankaranarayanan, A.</creatorcontrib><creatorcontrib>Burg, A.</creatorcontrib><title>Low complexity spectral analysis of heart-rate-variability through a wavelet based FFT</title><title>2012 Computing in Cardiology</title><addtitle>CiC</addtitle><description>In this paper, a low complexity system for spectral analysis of heart rate variability (HRV) is presented. The main idea of the proposed approach is the implementation of the Fast-Lomb periodogram that is a ubiquitous tool in spectral analysis, using a wavelet based Fast Fourier transform. Interestingly we show that the proposed approach enables the classification of processed data into more and less significant based on their contribution to output quality. Based on such a classification a percentage of less-significant data is being pruned leading to a significant reduction of algorithmic complexity with minimal quality degradation. Indeed, our results indicate that the proposed system can achieve up-to 45% reduction in number of computations with only 4.9% average error in the output quality compared to a conventional FFT based HRV system.</description><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Complexity theory</subject><subject>Discrete wavelet transforms</subject><subject>Heart rate variability</subject><subject>Kernel</subject><subject>Spectral analysis</subject><issn>0276-6574</issn><issn>2325-8853</issn><isbn>1467320765</isbn><isbn>9781467320764</isbn><isbn>9781467320757</isbn><isbn>9781467320771</isbn><isbn>1467320757</isbn><isbn>1467320773</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jMtKAzEUQOMLbGu_wE1-IJD3YynFUWHATXVbbqZ3bGTqlCS2zt-LqKuzOIdzRpbBeaGtU5I7487JTCppmPdGXZD5v7Dmksy4dJZZ4_Q1mZfyzrkIwZkZeW3HE-3G_WHAr1QnWg7Y1QwDhQ8YppIKHXu6Q8iVZajIjpATxDT8tHWXx8-3HQV6giMOWGmEglvaNOsbctXDUHD5xwV5ae7Xq0fWPj88re5aloQzlaECCdbHDnjQKARG8Oi87XUfIXArhTK90J3xkUfYbqOLMnitjVcRuejVgtz-fhMibg457SFPG6slV96qb6JlUPw</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Karakonstantis, G.</creator><creator>Sankaranarayanan, A.</creator><creator>Burg, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201209</creationdate><title>Low complexity spectral analysis of heart-rate-variability through a wavelet based FFT</title><author>Karakonstantis, G. ; Sankaranarayanan, A. ; Burg, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e3a2a68bca094e11eba8e786f4fba9062135f14c58b0baddb7b29844583be01f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Complexity theory</topic><topic>Discrete wavelet transforms</topic><topic>Heart rate variability</topic><topic>Kernel</topic><topic>Spectral analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Karakonstantis, G.</creatorcontrib><creatorcontrib>Sankaranarayanan, A.</creatorcontrib><creatorcontrib>Burg, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karakonstantis, G.</au><au>Sankaranarayanan, A.</au><au>Burg, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low complexity spectral analysis of heart-rate-variability through a wavelet based FFT</atitle><btitle>2012 Computing in Cardiology</btitle><stitle>CiC</stitle><date>2012-09</date><risdate>2012</risdate><spage>285</spage><epage>288</epage><pages>285-288</pages><issn>0276-6574</issn><eissn>2325-8853</eissn><isbn>1467320765</isbn><isbn>9781467320764</isbn><eisbn>9781467320757</eisbn><eisbn>9781467320771</eisbn><eisbn>1467320757</eisbn><eisbn>1467320773</eisbn><abstract>In this paper, a low complexity system for spectral analysis of heart rate variability (HRV) is presented. The main idea of the proposed approach is the implementation of the Fast-Lomb periodogram that is a ubiquitous tool in spectral analysis, using a wavelet based Fast Fourier transform. Interestingly we show that the proposed approach enables the classification of processed data into more and less significant based on their contribution to output quality. Based on such a classification a percentage of less-significant data is being pruned leading to a significant reduction of algorithmic complexity with minimal quality degradation. Indeed, our results indicate that the proposed system can achieve up-to 45% reduction in number of computations with only 4.9% average error in the output quality compared to a conventional FFT based HRV system.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0276-6574
ispartof 2012 Computing in Cardiology, 2012, p.285-288
issn 0276-6574
2325-8853
language eng
recordid cdi_ieee_primary_6420386
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Approximation methods
Complexity theory
Discrete wavelet transforms
Heart rate variability
Kernel
Spectral analysis
title Low complexity spectral analysis of heart-rate-variability through a wavelet based FFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low%20complexity%20spectral%20analysis%20of%20heart-rate-variability%20through%20a%20wavelet%20based%20FFT&rft.btitle=2012%20Computing%20in%20Cardiology&rft.au=Karakonstantis,%20G.&rft.date=2012-09&rft.spage=285&rft.epage=288&rft.pages=285-288&rft.issn=0276-6574&rft.eissn=2325-8853&rft.isbn=1467320765&rft.isbn_list=9781467320764&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6420386%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467320757&rft.eisbn_list=9781467320771&rft.eisbn_list=1467320757&rft.eisbn_list=1467320773&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6420386&rfr_iscdi=true