Outliers influence to the point distance distribution normality within the data clusters

In order to verify the cluster analysis results, a normality test is being applied to the distribution of data point's distances from their cluster center. The presence of the outlier points within the input data can however influence this method in a negative way. Therefore, a normality test w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Malkic, J., Sarajlic, N., Hadzic, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1656
container_issue
container_start_page 1653
container_title
container_volume
creator Malkic, J.
Sarajlic, N.
Hadzic, D.
description In order to verify the cluster analysis results, a normality test is being applied to the distribution of data point's distances from their cluster center. The presence of the outlier points within the input data can however influence this method in a negative way. Therefore, a normality test will show better results in recognizing and assessing the clusters if the outlier presence is reduced. This fact is being confirmed by empirically comparing the normality test results for the clusters produced by different cluster analyses methods on the same data set.
doi_str_mv 10.1109/TELFOR.2012.6419542
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6419542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6419542</ieee_id><sourcerecordid>6419542</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-64b0e8c2360c66d93a0b0202d9f40bff09b98687dd87854c3104eccdcf27ee083</originalsourceid><addsrcrecordid>eNpVkMtKw0AYhUdEUGqeoJt5gcR_LpnLUkqrQiAgFdyVyVzoSDopyQTp29tqN67OBc63OAgtCVSEgH7arptN-15RILQSnOia0xtUaKkIF5JRrTi9_ZdZfY-KafoCgDNAguAP6LOdcx_9OOGYQj_7ZD3OA857j49DTBm7OGVzaS9mjN2c45BwGsaD6WM-4e-Y9zH9DpzJBtt-nvKZ94juguknX1x1gT426-3qtWzal7fVc1NGIutcCt6BV5YyAVYIp5mBDihQpwOHLgTQnVZCSeeUVDW3jAD31jobqPQeFFug5R83eu93xzEezHjaXf9gP5nOVaU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Outliers influence to the point distance distribution normality within the data clusters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Malkic, J. ; Sarajlic, N. ; Hadzic, D.</creator><creatorcontrib>Malkic, J. ; Sarajlic, N. ; Hadzic, D.</creatorcontrib><description>In order to verify the cluster analysis results, a normality test is being applied to the distribution of data point's distances from their cluster center. The presence of the outlier points within the input data can however influence this method in a negative way. Therefore, a normality test will show better results in recognizing and assessing the clusters if the outlier presence is reduced. This fact is being confirmed by empirically comparing the normality test results for the clusters produced by different cluster analyses methods on the same data set.</description><identifier>ISBN: 9781467329835</identifier><identifier>ISBN: 1467329835</identifier><identifier>EISBN: 9781467329842</identifier><identifier>EISBN: 9781467329828</identifier><identifier>EISBN: 1467329827</identifier><identifier>EISBN: 1467329843</identifier><identifier>DOI: 10.1109/TELFOR.2012.6419542</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Cluster verification ; Clustering algorithms ; data mining ; distance distribution normality ; Gaussian distribution ; Histograms ; Shape ; Vectors</subject><ispartof>2012 20th Telecommunications Forum (TELFOR), 2012, p.1653-1656</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6419542$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6419542$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Malkic, J.</creatorcontrib><creatorcontrib>Sarajlic, N.</creatorcontrib><creatorcontrib>Hadzic, D.</creatorcontrib><title>Outliers influence to the point distance distribution normality within the data clusters</title><title>2012 20th Telecommunications Forum (TELFOR)</title><addtitle>TELFOR</addtitle><description>In order to verify the cluster analysis results, a normality test is being applied to the distribution of data point's distances from their cluster center. The presence of the outlier points within the input data can however influence this method in a negative way. Therefore, a normality test will show better results in recognizing and assessing the clusters if the outlier presence is reduced. This fact is being confirmed by empirically comparing the normality test results for the clusters produced by different cluster analyses methods on the same data set.</description><subject>Algorithm design and analysis</subject><subject>Cluster verification</subject><subject>Clustering algorithms</subject><subject>data mining</subject><subject>distance distribution normality</subject><subject>Gaussian distribution</subject><subject>Histograms</subject><subject>Shape</subject><subject>Vectors</subject><isbn>9781467329835</isbn><isbn>1467329835</isbn><isbn>9781467329842</isbn><isbn>9781467329828</isbn><isbn>1467329827</isbn><isbn>1467329843</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKw0AYhUdEUGqeoJt5gcR_LpnLUkqrQiAgFdyVyVzoSDopyQTp29tqN67OBc63OAgtCVSEgH7arptN-15RILQSnOia0xtUaKkIF5JRrTi9_ZdZfY-KafoCgDNAguAP6LOdcx_9OOGYQj_7ZD3OA857j49DTBm7OGVzaS9mjN2c45BwGsaD6WM-4e-Y9zH9DpzJBtt-nvKZ94juguknX1x1gT426-3qtWzal7fVc1NGIutcCt6BV5YyAVYIp5mBDihQpwOHLgTQnVZCSeeUVDW3jAD31jobqPQeFFug5R83eu93xzEezHjaXf9gP5nOVaU</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Malkic, J.</creator><creator>Sarajlic, N.</creator><creator>Hadzic, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Outliers influence to the point distance distribution normality within the data clusters</title><author>Malkic, J. ; Sarajlic, N. ; Hadzic, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-64b0e8c2360c66d93a0b0202d9f40bff09b98687dd87854c3104eccdcf27ee083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Cluster verification</topic><topic>Clustering algorithms</topic><topic>data mining</topic><topic>distance distribution normality</topic><topic>Gaussian distribution</topic><topic>Histograms</topic><topic>Shape</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Malkic, J.</creatorcontrib><creatorcontrib>Sarajlic, N.</creatorcontrib><creatorcontrib>Hadzic, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Malkic, J.</au><au>Sarajlic, N.</au><au>Hadzic, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Outliers influence to the point distance distribution normality within the data clusters</atitle><btitle>2012 20th Telecommunications Forum (TELFOR)</btitle><stitle>TELFOR</stitle><date>2012-11</date><risdate>2012</risdate><spage>1653</spage><epage>1656</epage><pages>1653-1656</pages><isbn>9781467329835</isbn><isbn>1467329835</isbn><eisbn>9781467329842</eisbn><eisbn>9781467329828</eisbn><eisbn>1467329827</eisbn><eisbn>1467329843</eisbn><abstract>In order to verify the cluster analysis results, a normality test is being applied to the distribution of data point's distances from their cluster center. The presence of the outlier points within the input data can however influence this method in a negative way. Therefore, a normality test will show better results in recognizing and assessing the clusters if the outlier presence is reduced. This fact is being confirmed by empirically comparing the normality test results for the clusters produced by different cluster analyses methods on the same data set.</abstract><pub>IEEE</pub><doi>10.1109/TELFOR.2012.6419542</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467329835
ispartof 2012 20th Telecommunications Forum (TELFOR), 2012, p.1653-1656
issn
language eng
recordid cdi_ieee_primary_6419542
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Cluster verification
Clustering algorithms
data mining
distance distribution normality
Gaussian distribution
Histograms
Shape
Vectors
title Outliers influence to the point distance distribution normality within the data clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Outliers%20influence%20to%20the%20point%20distance%20distribution%20normality%20within%20the%20data%20clusters&rft.btitle=2012%2020th%20Telecommunications%20Forum%20(TELFOR)&rft.au=Malkic,%20J.&rft.date=2012-11&rft.spage=1653&rft.epage=1656&rft.pages=1653-1656&rft.isbn=9781467329835&rft.isbn_list=1467329835&rft_id=info:doi/10.1109/TELFOR.2012.6419542&rft_dat=%3Cieee_6IE%3E6419542%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467329842&rft.eisbn_list=9781467329828&rft.eisbn_list=1467329827&rft.eisbn_list=1467329843&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6419542&rfr_iscdi=true