Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz

We have been developing a terahertz camera based on antenna-coupled superconducting resonators, the so-called microwave kinetic inductance detectors (MKIDs), and a silicon lens array. The MKID consists of a coplanar waveguide coupled to a double slot antenna and is patterned on a high-quality alumin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on terahertz science and technology 2013-03, Vol.3 (2), p.180-186
Hauptverfasser: Naruse, M., Sekimoto, Y., Noguchi, T., Miyachi, A., Karatsu, K., Nitta, T., Sekine, M., Uzawa, Y., Taino, T., Myoren, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 2
container_start_page 180
container_title IEEE transactions on terahertz science and technology
container_volume 3
creator Naruse, M.
Sekimoto, Y.
Noguchi, T.
Miyachi, A.
Karatsu, K.
Nitta, T.
Sekine, M.
Uzawa, Y.
Taino, T.
Myoren, H.
description We have been developing a terahertz camera based on antenna-coupled superconducting resonators, the so-called microwave kinetic inductance detectors (MKIDs), and a silicon lens array. The MKID consists of a coplanar waveguide coupled to a double slot antenna and is patterned on a high-quality aluminum film grown by molecular beam epitaxy. The camera is sensitive at frequencies of 200-240 GHz. Its bandwidth is limited by the impedance properties of the double slot antenna. The design, fabrication, and optical evaluations of the planar antennas and silicon lens arrays are presented in this paper. The MKID camera has been evaluated both in dark conditions and under optical radiation in a 0.1-K dilution refrigerator. The electrical noise equivalent power was around 5×10 -18 W/√(Hz) in dark conditions and 4×10 -16 W/√(Hz), which is much lower than the photon noise level, with the optical load. The optical efficiency of the camera was estimated by three independent methods, and the results were consistent with each other and equal to 20%-25% without an anti-reflection coating on the lens surface.
doi_str_mv 10.1109/TTHZ.2012.2237029
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6418076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6418076</ieee_id><sourcerecordid>10_1109_TTHZ_2012_2237029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-497890efc6b39d7b45cf8e5d407ff88a5a0a96b08be3c90ebba234211d7ab533</originalsourceid><addsrcrecordid>eNo9kE1qwzAQRkVpoSHNAUo3uoBT_UtehjRNQgPZeFG6MZI8AhdXNpayaE9fh4QMDDOL9w3MQ-iZkiWlpHytqt3XkhHKloxxTVh5h2aMSlVwIdT9bWefj2iR0jeZSiputJih6jjk1tsOb0JofQtx6oT7gA8QU7GKGWK0eN2fhg4a_NFGmHC8j83JZxs94DfI4HM_JmwzZozg7e7vCT0E2yVYXOccVe-bar0rDsftfr06FJ4pmQtRalMSCF45XjbaCemDAdkIokMwxkpLbKkcMQ64n0DnLJu-oLTR1knO54hezvqxT2mEUA9j-2PH35qS-iymPoupz2Lqq5gp83LJtABw45WghmjF_wGRX17H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz</title><source>IEEE Electronic Library (IEL)</source><creator>Naruse, M. ; Sekimoto, Y. ; Noguchi, T. ; Miyachi, A. ; Karatsu, K. ; Nitta, T. ; Sekine, M. ; Uzawa, Y. ; Taino, T. ; Myoren, H.</creator><creatorcontrib>Naruse, M. ; Sekimoto, Y. ; Noguchi, T. ; Miyachi, A. ; Karatsu, K. ; Nitta, T. ; Sekine, M. ; Uzawa, Y. ; Taino, T. ; Myoren, H.</creatorcontrib><description>We have been developing a terahertz camera based on antenna-coupled superconducting resonators, the so-called microwave kinetic inductance detectors (MKIDs), and a silicon lens array. The MKID consists of a coplanar waveguide coupled to a double slot antenna and is patterned on a high-quality aluminum film grown by molecular beam epitaxy. The camera is sensitive at frequencies of 200-240 GHz. Its bandwidth is limited by the impedance properties of the double slot antenna. The design, fabrication, and optical evaluations of the planar antennas and silicon lens arrays are presented in this paper. The MKID camera has been evaluated both in dark conditions and under optical radiation in a 0.1-K dilution refrigerator. The electrical noise equivalent power was around 5×10 -18 W/√(Hz) in dark conditions and 4×10 -16 W/√(Hz), which is much lower than the photon noise level, with the optical load. The optical efficiency of the camera was estimated by three independent methods, and the results were consistent with each other and equal to 20%-25% without an anti-reflection coating on the lens surface.</description><identifier>ISSN: 2156-342X</identifier><identifier>EISSN: 2156-3446</identifier><identifier>DOI: 10.1109/TTHZ.2012.2237029</identifier><identifier>CODEN: ITTSBX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image sensors ; Lenses ; Optical coupling ; Optical noise ; Optical resonators ; Optical sensors ; radio astronomy ; Slot antennas ; superconducting devices ; Temperature measurement</subject><ispartof>IEEE transactions on terahertz science and technology, 2013-03, Vol.3 (2), p.180-186</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-497890efc6b39d7b45cf8e5d407ff88a5a0a96b08be3c90ebba234211d7ab533</citedby><cites>FETCH-LOGICAL-c265t-497890efc6b39d7b45cf8e5d407ff88a5a0a96b08be3c90ebba234211d7ab533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6418076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6418076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Naruse, M.</creatorcontrib><creatorcontrib>Sekimoto, Y.</creatorcontrib><creatorcontrib>Noguchi, T.</creatorcontrib><creatorcontrib>Miyachi, A.</creatorcontrib><creatorcontrib>Karatsu, K.</creatorcontrib><creatorcontrib>Nitta, T.</creatorcontrib><creatorcontrib>Sekine, M.</creatorcontrib><creatorcontrib>Uzawa, Y.</creatorcontrib><creatorcontrib>Taino, T.</creatorcontrib><creatorcontrib>Myoren, H.</creatorcontrib><title>Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz</title><title>IEEE transactions on terahertz science and technology</title><addtitle>TTHZ</addtitle><description>We have been developing a terahertz camera based on antenna-coupled superconducting resonators, the so-called microwave kinetic inductance detectors (MKIDs), and a silicon lens array. The MKID consists of a coplanar waveguide coupled to a double slot antenna and is patterned on a high-quality aluminum film grown by molecular beam epitaxy. The camera is sensitive at frequencies of 200-240 GHz. Its bandwidth is limited by the impedance properties of the double slot antenna. The design, fabrication, and optical evaluations of the planar antennas and silicon lens arrays are presented in this paper. The MKID camera has been evaluated both in dark conditions and under optical radiation in a 0.1-K dilution refrigerator. The electrical noise equivalent power was around 5×10 -18 W/√(Hz) in dark conditions and 4×10 -16 W/√(Hz), which is much lower than the photon noise level, with the optical load. The optical efficiency of the camera was estimated by three independent methods, and the results were consistent with each other and equal to 20%-25% without an anti-reflection coating on the lens surface.</description><subject>Image sensors</subject><subject>Lenses</subject><subject>Optical coupling</subject><subject>Optical noise</subject><subject>Optical resonators</subject><subject>Optical sensors</subject><subject>radio astronomy</subject><subject>Slot antennas</subject><subject>superconducting devices</subject><subject>Temperature measurement</subject><issn>2156-342X</issn><issn>2156-3446</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1qwzAQRkVpoSHNAUo3uoBT_UtehjRNQgPZeFG6MZI8AhdXNpayaE9fh4QMDDOL9w3MQ-iZkiWlpHytqt3XkhHKloxxTVh5h2aMSlVwIdT9bWefj2iR0jeZSiputJih6jjk1tsOb0JofQtx6oT7gA8QU7GKGWK0eN2fhg4a_NFGmHC8j83JZxs94DfI4HM_JmwzZozg7e7vCT0E2yVYXOccVe-bar0rDsftfr06FJ4pmQtRalMSCF45XjbaCemDAdkIokMwxkpLbKkcMQ64n0DnLJu-oLTR1knO54hezvqxT2mEUA9j-2PH35qS-iymPoupz2Lqq5gp83LJtABw45WghmjF_wGRX17H</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Naruse, M.</creator><creator>Sekimoto, Y.</creator><creator>Noguchi, T.</creator><creator>Miyachi, A.</creator><creator>Karatsu, K.</creator><creator>Nitta, T.</creator><creator>Sekine, M.</creator><creator>Uzawa, Y.</creator><creator>Taino, T.</creator><creator>Myoren, H.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130301</creationdate><title>Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz</title><author>Naruse, M. ; Sekimoto, Y. ; Noguchi, T. ; Miyachi, A. ; Karatsu, K. ; Nitta, T. ; Sekine, M. ; Uzawa, Y. ; Taino, T. ; Myoren, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-497890efc6b39d7b45cf8e5d407ff88a5a0a96b08be3c90ebba234211d7ab533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Image sensors</topic><topic>Lenses</topic><topic>Optical coupling</topic><topic>Optical noise</topic><topic>Optical resonators</topic><topic>Optical sensors</topic><topic>radio astronomy</topic><topic>Slot antennas</topic><topic>superconducting devices</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naruse, M.</creatorcontrib><creatorcontrib>Sekimoto, Y.</creatorcontrib><creatorcontrib>Noguchi, T.</creatorcontrib><creatorcontrib>Miyachi, A.</creatorcontrib><creatorcontrib>Karatsu, K.</creatorcontrib><creatorcontrib>Nitta, T.</creatorcontrib><creatorcontrib>Sekine, M.</creatorcontrib><creatorcontrib>Uzawa, Y.</creatorcontrib><creatorcontrib>Taino, T.</creatorcontrib><creatorcontrib>Myoren, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on terahertz science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naruse, M.</au><au>Sekimoto, Y.</au><au>Noguchi, T.</au><au>Miyachi, A.</au><au>Karatsu, K.</au><au>Nitta, T.</au><au>Sekine, M.</au><au>Uzawa, Y.</au><au>Taino, T.</au><au>Myoren, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz</atitle><jtitle>IEEE transactions on terahertz science and technology</jtitle><stitle>TTHZ</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>3</volume><issue>2</issue><spage>180</spage><epage>186</epage><pages>180-186</pages><issn>2156-342X</issn><eissn>2156-3446</eissn><coden>ITTSBX</coden><abstract>We have been developing a terahertz camera based on antenna-coupled superconducting resonators, the so-called microwave kinetic inductance detectors (MKIDs), and a silicon lens array. The MKID consists of a coplanar waveguide coupled to a double slot antenna and is patterned on a high-quality aluminum film grown by molecular beam epitaxy. The camera is sensitive at frequencies of 200-240 GHz. Its bandwidth is limited by the impedance properties of the double slot antenna. The design, fabrication, and optical evaluations of the planar antennas and silicon lens arrays are presented in this paper. The MKID camera has been evaluated both in dark conditions and under optical radiation in a 0.1-K dilution refrigerator. The electrical noise equivalent power was around 5×10 -18 W/√(Hz) in dark conditions and 4×10 -16 W/√(Hz), which is much lower than the photon noise level, with the optical load. The optical efficiency of the camera was estimated by three independent methods, and the results were consistent with each other and equal to 20%-25% without an anti-reflection coating on the lens surface.</abstract><pub>IEEE</pub><doi>10.1109/TTHZ.2012.2237029</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-342X
ispartof IEEE transactions on terahertz science and technology, 2013-03, Vol.3 (2), p.180-186
issn 2156-342X
2156-3446
language eng
recordid cdi_ieee_primary_6418076
source IEEE Electronic Library (IEL)
subjects Image sensors
Lenses
Optical coupling
Optical noise
Optical resonators
Optical sensors
radio astronomy
Slot antennas
superconducting devices
Temperature measurement
title Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Efficiencies%20of%20Lens-Antenna%20Coupled%20Kinetic%20Inductance%20Detectors%20at%20220%20GHz&rft.jtitle=IEEE%20transactions%20on%20terahertz%20science%20and%20technology&rft.au=Naruse,%20M.&rft.date=2013-03-01&rft.volume=3&rft.issue=2&rft.spage=180&rft.epage=186&rft.pages=180-186&rft.issn=2156-342X&rft.eissn=2156-3446&rft.coden=ITTSBX&rft_id=info:doi/10.1109/TTHZ.2012.2237029&rft_dat=%3Ccrossref_RIE%3E10_1109_TTHZ_2012_2237029%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6418076&rfr_iscdi=true