Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz
We have been developing a terahertz camera based on antenna-coupled superconducting resonators, the so-called microwave kinetic inductance detectors (MKIDs), and a silicon lens array. The MKID consists of a coplanar waveguide coupled to a double slot antenna and is patterned on a high-quality alumin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on terahertz science and technology 2013-03, Vol.3 (2), p.180-186 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186 |
---|---|
container_issue | 2 |
container_start_page | 180 |
container_title | IEEE transactions on terahertz science and technology |
container_volume | 3 |
creator | Naruse, M. Sekimoto, Y. Noguchi, T. Miyachi, A. Karatsu, K. Nitta, T. Sekine, M. Uzawa, Y. Taino, T. Myoren, H. |
description | We have been developing a terahertz camera based on antenna-coupled superconducting resonators, the so-called microwave kinetic inductance detectors (MKIDs), and a silicon lens array. The MKID consists of a coplanar waveguide coupled to a double slot antenna and is patterned on a high-quality aluminum film grown by molecular beam epitaxy. The camera is sensitive at frequencies of 200-240 GHz. Its bandwidth is limited by the impedance properties of the double slot antenna. The design, fabrication, and optical evaluations of the planar antennas and silicon lens arrays are presented in this paper. The MKID camera has been evaluated both in dark conditions and under optical radiation in a 0.1-K dilution refrigerator. The electrical noise equivalent power was around 5×10 -18 W/√(Hz) in dark conditions and 4×10 -16 W/√(Hz), which is much lower than the photon noise level, with the optical load. The optical efficiency of the camera was estimated by three independent methods, and the results were consistent with each other and equal to 20%-25% without an anti-reflection coating on the lens surface. |
doi_str_mv | 10.1109/TTHZ.2012.2237029 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6418076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6418076</ieee_id><sourcerecordid>10_1109_TTHZ_2012_2237029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-497890efc6b39d7b45cf8e5d407ff88a5a0a96b08be3c90ebba234211d7ab533</originalsourceid><addsrcrecordid>eNo9kE1qwzAQRkVpoSHNAUo3uoBT_UtehjRNQgPZeFG6MZI8AhdXNpayaE9fh4QMDDOL9w3MQ-iZkiWlpHytqt3XkhHKloxxTVh5h2aMSlVwIdT9bWefj2iR0jeZSiputJih6jjk1tsOb0JofQtx6oT7gA8QU7GKGWK0eN2fhg4a_NFGmHC8j83JZxs94DfI4HM_JmwzZozg7e7vCT0E2yVYXOccVe-bar0rDsftfr06FJ4pmQtRalMSCF45XjbaCemDAdkIokMwxkpLbKkcMQ64n0DnLJu-oLTR1knO54hezvqxT2mEUA9j-2PH35qS-iymPoupz2Lqq5gp83LJtABw45WghmjF_wGRX17H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz</title><source>IEEE Electronic Library (IEL)</source><creator>Naruse, M. ; Sekimoto, Y. ; Noguchi, T. ; Miyachi, A. ; Karatsu, K. ; Nitta, T. ; Sekine, M. ; Uzawa, Y. ; Taino, T. ; Myoren, H.</creator><creatorcontrib>Naruse, M. ; Sekimoto, Y. ; Noguchi, T. ; Miyachi, A. ; Karatsu, K. ; Nitta, T. ; Sekine, M. ; Uzawa, Y. ; Taino, T. ; Myoren, H.</creatorcontrib><description>We have been developing a terahertz camera based on antenna-coupled superconducting resonators, the so-called microwave kinetic inductance detectors (MKIDs), and a silicon lens array. The MKID consists of a coplanar waveguide coupled to a double slot antenna and is patterned on a high-quality aluminum film grown by molecular beam epitaxy. The camera is sensitive at frequencies of 200-240 GHz. Its bandwidth is limited by the impedance properties of the double slot antenna. The design, fabrication, and optical evaluations of the planar antennas and silicon lens arrays are presented in this paper. The MKID camera has been evaluated both in dark conditions and under optical radiation in a 0.1-K dilution refrigerator. The electrical noise equivalent power was around 5×10 -18 W/√(Hz) in dark conditions and 4×10 -16 W/√(Hz), which is much lower than the photon noise level, with the optical load. The optical efficiency of the camera was estimated by three independent methods, and the results were consistent with each other and equal to 20%-25% without an anti-reflection coating on the lens surface.</description><identifier>ISSN: 2156-342X</identifier><identifier>EISSN: 2156-3446</identifier><identifier>DOI: 10.1109/TTHZ.2012.2237029</identifier><identifier>CODEN: ITTSBX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image sensors ; Lenses ; Optical coupling ; Optical noise ; Optical resonators ; Optical sensors ; radio astronomy ; Slot antennas ; superconducting devices ; Temperature measurement</subject><ispartof>IEEE transactions on terahertz science and technology, 2013-03, Vol.3 (2), p.180-186</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-497890efc6b39d7b45cf8e5d407ff88a5a0a96b08be3c90ebba234211d7ab533</citedby><cites>FETCH-LOGICAL-c265t-497890efc6b39d7b45cf8e5d407ff88a5a0a96b08be3c90ebba234211d7ab533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6418076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6418076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Naruse, M.</creatorcontrib><creatorcontrib>Sekimoto, Y.</creatorcontrib><creatorcontrib>Noguchi, T.</creatorcontrib><creatorcontrib>Miyachi, A.</creatorcontrib><creatorcontrib>Karatsu, K.</creatorcontrib><creatorcontrib>Nitta, T.</creatorcontrib><creatorcontrib>Sekine, M.</creatorcontrib><creatorcontrib>Uzawa, Y.</creatorcontrib><creatorcontrib>Taino, T.</creatorcontrib><creatorcontrib>Myoren, H.</creatorcontrib><title>Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz</title><title>IEEE transactions on terahertz science and technology</title><addtitle>TTHZ</addtitle><description>We have been developing a terahertz camera based on antenna-coupled superconducting resonators, the so-called microwave kinetic inductance detectors (MKIDs), and a silicon lens array. The MKID consists of a coplanar waveguide coupled to a double slot antenna and is patterned on a high-quality aluminum film grown by molecular beam epitaxy. The camera is sensitive at frequencies of 200-240 GHz. Its bandwidth is limited by the impedance properties of the double slot antenna. The design, fabrication, and optical evaluations of the planar antennas and silicon lens arrays are presented in this paper. The MKID camera has been evaluated both in dark conditions and under optical radiation in a 0.1-K dilution refrigerator. The electrical noise equivalent power was around 5×10 -18 W/√(Hz) in dark conditions and 4×10 -16 W/√(Hz), which is much lower than the photon noise level, with the optical load. The optical efficiency of the camera was estimated by three independent methods, and the results were consistent with each other and equal to 20%-25% without an anti-reflection coating on the lens surface.</description><subject>Image sensors</subject><subject>Lenses</subject><subject>Optical coupling</subject><subject>Optical noise</subject><subject>Optical resonators</subject><subject>Optical sensors</subject><subject>radio astronomy</subject><subject>Slot antennas</subject><subject>superconducting devices</subject><subject>Temperature measurement</subject><issn>2156-342X</issn><issn>2156-3446</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1qwzAQRkVpoSHNAUo3uoBT_UtehjRNQgPZeFG6MZI8AhdXNpayaE9fh4QMDDOL9w3MQ-iZkiWlpHytqt3XkhHKloxxTVh5h2aMSlVwIdT9bWefj2iR0jeZSiputJih6jjk1tsOb0JofQtx6oT7gA8QU7GKGWK0eN2fhg4a_NFGmHC8j83JZxs94DfI4HM_JmwzZozg7e7vCT0E2yVYXOccVe-bar0rDsftfr06FJ4pmQtRalMSCF45XjbaCemDAdkIokMwxkpLbKkcMQ64n0DnLJu-oLTR1knO54hezvqxT2mEUA9j-2PH35qS-iymPoupz2Lqq5gp83LJtABw45WghmjF_wGRX17H</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Naruse, M.</creator><creator>Sekimoto, Y.</creator><creator>Noguchi, T.</creator><creator>Miyachi, A.</creator><creator>Karatsu, K.</creator><creator>Nitta, T.</creator><creator>Sekine, M.</creator><creator>Uzawa, Y.</creator><creator>Taino, T.</creator><creator>Myoren, H.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130301</creationdate><title>Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz</title><author>Naruse, M. ; Sekimoto, Y. ; Noguchi, T. ; Miyachi, A. ; Karatsu, K. ; Nitta, T. ; Sekine, M. ; Uzawa, Y. ; Taino, T. ; Myoren, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-497890efc6b39d7b45cf8e5d407ff88a5a0a96b08be3c90ebba234211d7ab533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Image sensors</topic><topic>Lenses</topic><topic>Optical coupling</topic><topic>Optical noise</topic><topic>Optical resonators</topic><topic>Optical sensors</topic><topic>radio astronomy</topic><topic>Slot antennas</topic><topic>superconducting devices</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naruse, M.</creatorcontrib><creatorcontrib>Sekimoto, Y.</creatorcontrib><creatorcontrib>Noguchi, T.</creatorcontrib><creatorcontrib>Miyachi, A.</creatorcontrib><creatorcontrib>Karatsu, K.</creatorcontrib><creatorcontrib>Nitta, T.</creatorcontrib><creatorcontrib>Sekine, M.</creatorcontrib><creatorcontrib>Uzawa, Y.</creatorcontrib><creatorcontrib>Taino, T.</creatorcontrib><creatorcontrib>Myoren, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on terahertz science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naruse, M.</au><au>Sekimoto, Y.</au><au>Noguchi, T.</au><au>Miyachi, A.</au><au>Karatsu, K.</au><au>Nitta, T.</au><au>Sekine, M.</au><au>Uzawa, Y.</au><au>Taino, T.</au><au>Myoren, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz</atitle><jtitle>IEEE transactions on terahertz science and technology</jtitle><stitle>TTHZ</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>3</volume><issue>2</issue><spage>180</spage><epage>186</epage><pages>180-186</pages><issn>2156-342X</issn><eissn>2156-3446</eissn><coden>ITTSBX</coden><abstract>We have been developing a terahertz camera based on antenna-coupled superconducting resonators, the so-called microwave kinetic inductance detectors (MKIDs), and a silicon lens array. The MKID consists of a coplanar waveguide coupled to a double slot antenna and is patterned on a high-quality aluminum film grown by molecular beam epitaxy. The camera is sensitive at frequencies of 200-240 GHz. Its bandwidth is limited by the impedance properties of the double slot antenna. The design, fabrication, and optical evaluations of the planar antennas and silicon lens arrays are presented in this paper. The MKID camera has been evaluated both in dark conditions and under optical radiation in a 0.1-K dilution refrigerator. The electrical noise equivalent power was around 5×10 -18 W/√(Hz) in dark conditions and 4×10 -16 W/√(Hz), which is much lower than the photon noise level, with the optical load. The optical efficiency of the camera was estimated by three independent methods, and the results were consistent with each other and equal to 20%-25% without an anti-reflection coating on the lens surface.</abstract><pub>IEEE</pub><doi>10.1109/TTHZ.2012.2237029</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-342X |
ispartof | IEEE transactions on terahertz science and technology, 2013-03, Vol.3 (2), p.180-186 |
issn | 2156-342X 2156-3446 |
language | eng |
recordid | cdi_ieee_primary_6418076 |
source | IEEE Electronic Library (IEL) |
subjects | Image sensors Lenses Optical coupling Optical noise Optical resonators Optical sensors radio astronomy Slot antennas superconducting devices Temperature measurement |
title | Optical Efficiencies of Lens-Antenna Coupled Kinetic Inductance Detectors at 220 GHz |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Efficiencies%20of%20Lens-Antenna%20Coupled%20Kinetic%20Inductance%20Detectors%20at%20220%20GHz&rft.jtitle=IEEE%20transactions%20on%20terahertz%20science%20and%20technology&rft.au=Naruse,%20M.&rft.date=2013-03-01&rft.volume=3&rft.issue=2&rft.spage=180&rft.epage=186&rft.pages=180-186&rft.issn=2156-342X&rft.eissn=2156-3446&rft.coden=ITTSBX&rft_id=info:doi/10.1109/TTHZ.2012.2237029&rft_dat=%3Ccrossref_RIE%3E10_1109_TTHZ_2012_2237029%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6418076&rfr_iscdi=true |