Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring
The robustness and integrity of IP networks require efficient tools for traffic monitoring and analysis, which scale well with traffic volume and network size. We address the problem of optimal large-scale monitoring of computer networks under resource constraints. Specifically, we consider the task...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2013-04, Vol.61 (8), p.2088-2103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2103 |
---|---|
container_issue | 8 |
container_start_page | 2088 |
container_title | IEEE transactions on signal processing |
container_volume | 61 |
creator | Kallitsis, M. G. Stoev, S. A. Michailidis, G. |
description | The robustness and integrity of IP networks require efficient tools for traffic monitoring and analysis, which scale well with traffic volume and network size. We address the problem of optimal large-scale monitoring of computer networks under resource constraints. Specifically, we consider the task of selecting the "best" subset of at most K links to monitor, so as to optimally predict the traffic load at the remaining ones. Our notion of optimality is quantified in terms of the statistical error of network traffic predictors. The optimal monitoring problem at hand is akin to certain combinatorial constraints, which render the algorithms seeking the exact solution impractical. We develop a number of fast algorithms that improve upon existing algorithms in terms of computational complexity and accuracy. Our algorithms exploit the geometry of principal component analysis, which also leads us to new types of theoretical bounds on the prediction error. Finally, these algorithms are amenable to randomization, where the best of several parallel independent instances often yields the exact optimal solution. Their performance is illustrated and evaluated on simulated and real-network traces. |
doi_str_mv | 10.1109/TSP.2013.2242066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6418047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6418047</ieee_id><sourcerecordid>1365124603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-735a8e08031da179b1b0306b91654ab76f312bcdf030e65d41cd8d0c605fb89d3</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhosoqNN7wZuACN50npOvtpdjOBXqB0zBu5Km6Yx2zUw6xH9vxoYXXiXkPO_L4UmSnCGMEaG4fpk_jykgG1PKKUi5lxxhwTEFnsn9eAfBUpFnb4fJcQgfAMh5IY-ScqbCQCbdwnk7vC8DaZ0nT6vBLlVHStt_krnpjB6s64ntSan8wqRzrTpDHs3w7fwneXC9HWK8X5wkB63qgjndnaPkdXbzMr1Ly6fb--mkTDWDbEgzJlRuIAeGjcKsqLEGBrIuUAqu6ky2DGmtmza-GikajrrJG9ASRFvnRcNGydW2d-Xd19qEoVraoE3Xqd64daiQSYGUS2ARvfiHfri17-N2kaJCiFwyjBRsKe1dCN601cpHA_6nQqg2equot9rorXZ6Y-RyV6xC1NF61Wsb_nI0owKLPIvc-Zazxpi_seSYx59hvypsgUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325558631</pqid></control><display><type>article</type><title>Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Kallitsis, M. G. ; Stoev, S. A. ; Michailidis, G.</creator><creatorcontrib>Kallitsis, M. G. ; Stoev, S. A. ; Michailidis, G.</creatorcontrib><description>The robustness and integrity of IP networks require efficient tools for traffic monitoring and analysis, which scale well with traffic volume and network size. We address the problem of optimal large-scale monitoring of computer networks under resource constraints. Specifically, we consider the task of selecting the "best" subset of at most K links to monitor, so as to optimally predict the traffic load at the remaining ones. Our notion of optimality is quantified in terms of the statistical error of network traffic predictors. The optimal monitoring problem at hand is akin to certain combinatorial constraints, which render the algorithms seeking the exact solution impractical. We develop a number of fast algorithms that improve upon existing algorithms in terms of computational complexity and accuracy. Our algorithms exploit the geometry of principal component analysis, which also leads us to new types of theoretical bounds on the prediction error. Finally, these algorithms are amenable to randomization, where the best of several parallel independent instances often yields the exact optimal solution. Their performance is illustrated and evaluated on simulated and real-network traces.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2242066</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Approximation algorithms ; Combinatorial analysis ; computer networks ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Information, signal and communications theory ; IP network ; Links ; Monitoring ; Network topology ; Networks ; Optimization ; Prediction algorithms ; prediction methods ; Principal component analysis ; Signal and communications theory ; signal processing algorithms ; Signal, noise ; Studies ; Telecommunications and information theory ; Traffic engineering ; Traffic flow</subject><ispartof>IEEE transactions on signal processing, 2013-04, Vol.61 (8), p.2088-2103</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-735a8e08031da179b1b0306b91654ab76f312bcdf030e65d41cd8d0c605fb89d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6418047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6418047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27251987$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kallitsis, M. G.</creatorcontrib><creatorcontrib>Stoev, S. A.</creatorcontrib><creatorcontrib>Michailidis, G.</creatorcontrib><title>Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The robustness and integrity of IP networks require efficient tools for traffic monitoring and analysis, which scale well with traffic volume and network size. We address the problem of optimal large-scale monitoring of computer networks under resource constraints. Specifically, we consider the task of selecting the "best" subset of at most K links to monitor, so as to optimally predict the traffic load at the remaining ones. Our notion of optimality is quantified in terms of the statistical error of network traffic predictors. The optimal monitoring problem at hand is akin to certain combinatorial constraints, which render the algorithms seeking the exact solution impractical. We develop a number of fast algorithms that improve upon existing algorithms in terms of computational complexity and accuracy. Our algorithms exploit the geometry of principal component analysis, which also leads us to new types of theoretical bounds on the prediction error. Finally, these algorithms are amenable to randomization, where the best of several parallel independent instances often yields the exact optimal solution. Their performance is illustrated and evaluated on simulated and real-network traces.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Combinatorial analysis</subject><subject>computer networks</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>IP network</subject><subject>Links</subject><subject>Monitoring</subject><subject>Network topology</subject><subject>Networks</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>prediction methods</subject><subject>Principal component analysis</subject><subject>Signal and communications theory</subject><subject>signal processing algorithms</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkV1LwzAUhosoqNN7wZuACN50npOvtpdjOBXqB0zBu5Km6Yx2zUw6xH9vxoYXXiXkPO_L4UmSnCGMEaG4fpk_jykgG1PKKUi5lxxhwTEFnsn9eAfBUpFnb4fJcQgfAMh5IY-ScqbCQCbdwnk7vC8DaZ0nT6vBLlVHStt_krnpjB6s64ntSan8wqRzrTpDHs3w7fwneXC9HWK8X5wkB63qgjndnaPkdXbzMr1Ly6fb--mkTDWDbEgzJlRuIAeGjcKsqLEGBrIuUAqu6ky2DGmtmza-GikajrrJG9ASRFvnRcNGydW2d-Xd19qEoVraoE3Xqd64daiQSYGUS2ARvfiHfri17-N2kaJCiFwyjBRsKe1dCN601cpHA_6nQqg2equot9rorXZ6Y-RyV6xC1NF61Wsb_nI0owKLPIvc-Zazxpi_seSYx59hvypsgUw</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Kallitsis, M. G.</creator><creator>Stoev, S. A.</creator><creator>Michailidis, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130401</creationdate><title>Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring</title><author>Kallitsis, M. G. ; Stoev, S. A. ; Michailidis, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-735a8e08031da179b1b0306b91654ab76f312bcdf030e65d41cd8d0c605fb89d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Combinatorial analysis</topic><topic>computer networks</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>IP network</topic><topic>Links</topic><topic>Monitoring</topic><topic>Network topology</topic><topic>Networks</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>prediction methods</topic><topic>Principal component analysis</topic><topic>Signal and communications theory</topic><topic>signal processing algorithms</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kallitsis, M. G.</creatorcontrib><creatorcontrib>Stoev, S. A.</creatorcontrib><creatorcontrib>Michailidis, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kallitsis, M. G.</au><au>Stoev, S. A.</au><au>Michailidis, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>61</volume><issue>8</issue><spage>2088</spage><epage>2103</epage><pages>2088-2103</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The robustness and integrity of IP networks require efficient tools for traffic monitoring and analysis, which scale well with traffic volume and network size. We address the problem of optimal large-scale monitoring of computer networks under resource constraints. Specifically, we consider the task of selecting the "best" subset of at most K links to monitor, so as to optimally predict the traffic load at the remaining ones. Our notion of optimality is quantified in terms of the statistical error of network traffic predictors. The optimal monitoring problem at hand is akin to certain combinatorial constraints, which render the algorithms seeking the exact solution impractical. We develop a number of fast algorithms that improve upon existing algorithms in terms of computational complexity and accuracy. Our algorithms exploit the geometry of principal component analysis, which also leads us to new types of theoretical bounds on the prediction error. Finally, these algorithms are amenable to randomization, where the best of several parallel independent instances often yields the exact optimal solution. Their performance is illustrated and evaluated on simulated and real-network traces.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2242066</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2013-04, Vol.61 (8), p.2088-2103 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_6418047 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Applied sciences Approximation algorithms Combinatorial analysis computer networks Covariance matrix Detection, estimation, filtering, equalization, prediction Exact sciences and technology Information, signal and communications theory IP network Links Monitoring Network topology Networks Optimization Prediction algorithms prediction methods Principal component analysis Signal and communications theory signal processing algorithms Signal, noise Studies Telecommunications and information theory Traffic engineering Traffic flow |
title | Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Algorithms%20for%20Optimal%20Link%20Selection%20in%20Large-Scale%20Network%20Monitoring&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kallitsis,%20M.%20G.&rft.date=2013-04-01&rft.volume=61&rft.issue=8&rft.spage=2088&rft.epage=2103&rft.pages=2088-2103&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2242066&rft_dat=%3Cproquest_RIE%3E1365124603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325558631&rft_id=info:pmid/&rft_ieee_id=6418047&rfr_iscdi=true |