Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring

The robustness and integrity of IP networks require efficient tools for traffic monitoring and analysis, which scale well with traffic volume and network size. We address the problem of optimal large-scale monitoring of computer networks under resource constraints. Specifically, we consider the task...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2013-04, Vol.61 (8), p.2088-2103
Hauptverfasser: Kallitsis, M. G., Stoev, S. A., Michailidis, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2103
container_issue 8
container_start_page 2088
container_title IEEE transactions on signal processing
container_volume 61
creator Kallitsis, M. G.
Stoev, S. A.
Michailidis, G.
description The robustness and integrity of IP networks require efficient tools for traffic monitoring and analysis, which scale well with traffic volume and network size. We address the problem of optimal large-scale monitoring of computer networks under resource constraints. Specifically, we consider the task of selecting the "best" subset of at most K links to monitor, so as to optimally predict the traffic load at the remaining ones. Our notion of optimality is quantified in terms of the statistical error of network traffic predictors. The optimal monitoring problem at hand is akin to certain combinatorial constraints, which render the algorithms seeking the exact solution impractical. We develop a number of fast algorithms that improve upon existing algorithms in terms of computational complexity and accuracy. Our algorithms exploit the geometry of principal component analysis, which also leads us to new types of theoretical bounds on the prediction error. Finally, these algorithms are amenable to randomization, where the best of several parallel independent instances often yields the exact optimal solution. Their performance is illustrated and evaluated on simulated and real-network traces.
doi_str_mv 10.1109/TSP.2013.2242066
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6418047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6418047</ieee_id><sourcerecordid>1365124603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-735a8e08031da179b1b0306b91654ab76f312bcdf030e65d41cd8d0c605fb89d3</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhosoqNN7wZuACN50npOvtpdjOBXqB0zBu5Km6Yx2zUw6xH9vxoYXXiXkPO_L4UmSnCGMEaG4fpk_jykgG1PKKUi5lxxhwTEFnsn9eAfBUpFnb4fJcQgfAMh5IY-ScqbCQCbdwnk7vC8DaZ0nT6vBLlVHStt_krnpjB6s64ntSan8wqRzrTpDHs3w7fwneXC9HWK8X5wkB63qgjndnaPkdXbzMr1Ly6fb--mkTDWDbEgzJlRuIAeGjcKsqLEGBrIuUAqu6ky2DGmtmza-GikajrrJG9ASRFvnRcNGydW2d-Xd19qEoVraoE3Xqd64daiQSYGUS2ARvfiHfri17-N2kaJCiFwyjBRsKe1dCN601cpHA_6nQqg2equot9rorXZ6Y-RyV6xC1NF61Wsb_nI0owKLPIvc-Zazxpi_seSYx59hvypsgUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325558631</pqid></control><display><type>article</type><title>Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Kallitsis, M. G. ; Stoev, S. A. ; Michailidis, G.</creator><creatorcontrib>Kallitsis, M. G. ; Stoev, S. A. ; Michailidis, G.</creatorcontrib><description>The robustness and integrity of IP networks require efficient tools for traffic monitoring and analysis, which scale well with traffic volume and network size. We address the problem of optimal large-scale monitoring of computer networks under resource constraints. Specifically, we consider the task of selecting the "best" subset of at most K links to monitor, so as to optimally predict the traffic load at the remaining ones. Our notion of optimality is quantified in terms of the statistical error of network traffic predictors. The optimal monitoring problem at hand is akin to certain combinatorial constraints, which render the algorithms seeking the exact solution impractical. We develop a number of fast algorithms that improve upon existing algorithms in terms of computational complexity and accuracy. Our algorithms exploit the geometry of principal component analysis, which also leads us to new types of theoretical bounds on the prediction error. Finally, these algorithms are amenable to randomization, where the best of several parallel independent instances often yields the exact optimal solution. Their performance is illustrated and evaluated on simulated and real-network traces.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2242066</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Approximation algorithms ; Combinatorial analysis ; computer networks ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Information, signal and communications theory ; IP network ; Links ; Monitoring ; Network topology ; Networks ; Optimization ; Prediction algorithms ; prediction methods ; Principal component analysis ; Signal and communications theory ; signal processing algorithms ; Signal, noise ; Studies ; Telecommunications and information theory ; Traffic engineering ; Traffic flow</subject><ispartof>IEEE transactions on signal processing, 2013-04, Vol.61 (8), p.2088-2103</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-735a8e08031da179b1b0306b91654ab76f312bcdf030e65d41cd8d0c605fb89d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6418047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6418047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27251987$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kallitsis, M. G.</creatorcontrib><creatorcontrib>Stoev, S. A.</creatorcontrib><creatorcontrib>Michailidis, G.</creatorcontrib><title>Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The robustness and integrity of IP networks require efficient tools for traffic monitoring and analysis, which scale well with traffic volume and network size. We address the problem of optimal large-scale monitoring of computer networks under resource constraints. Specifically, we consider the task of selecting the "best" subset of at most K links to monitor, so as to optimally predict the traffic load at the remaining ones. Our notion of optimality is quantified in terms of the statistical error of network traffic predictors. The optimal monitoring problem at hand is akin to certain combinatorial constraints, which render the algorithms seeking the exact solution impractical. We develop a number of fast algorithms that improve upon existing algorithms in terms of computational complexity and accuracy. Our algorithms exploit the geometry of principal component analysis, which also leads us to new types of theoretical bounds on the prediction error. Finally, these algorithms are amenable to randomization, where the best of several parallel independent instances often yields the exact optimal solution. Their performance is illustrated and evaluated on simulated and real-network traces.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Combinatorial analysis</subject><subject>computer networks</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>IP network</subject><subject>Links</subject><subject>Monitoring</subject><subject>Network topology</subject><subject>Networks</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>prediction methods</subject><subject>Principal component analysis</subject><subject>Signal and communications theory</subject><subject>signal processing algorithms</subject><subject>Signal, noise</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkV1LwzAUhosoqNN7wZuACN50npOvtpdjOBXqB0zBu5Km6Yx2zUw6xH9vxoYXXiXkPO_L4UmSnCGMEaG4fpk_jykgG1PKKUi5lxxhwTEFnsn9eAfBUpFnb4fJcQgfAMh5IY-ScqbCQCbdwnk7vC8DaZ0nT6vBLlVHStt_krnpjB6s64ntSan8wqRzrTpDHs3w7fwneXC9HWK8X5wkB63qgjndnaPkdXbzMr1Ly6fb--mkTDWDbEgzJlRuIAeGjcKsqLEGBrIuUAqu6ky2DGmtmza-GikajrrJG9ASRFvnRcNGydW2d-Xd19qEoVraoE3Xqd64daiQSYGUS2ARvfiHfri17-N2kaJCiFwyjBRsKe1dCN601cpHA_6nQqg2equot9rorXZ6Y-RyV6xC1NF61Wsb_nI0owKLPIvc-Zazxpi_seSYx59hvypsgUw</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Kallitsis, M. G.</creator><creator>Stoev, S. A.</creator><creator>Michailidis, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130401</creationdate><title>Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring</title><author>Kallitsis, M. G. ; Stoev, S. A. ; Michailidis, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-735a8e08031da179b1b0306b91654ab76f312bcdf030e65d41cd8d0c605fb89d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Combinatorial analysis</topic><topic>computer networks</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>IP network</topic><topic>Links</topic><topic>Monitoring</topic><topic>Network topology</topic><topic>Networks</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>prediction methods</topic><topic>Principal component analysis</topic><topic>Signal and communications theory</topic><topic>signal processing algorithms</topic><topic>Signal, noise</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kallitsis, M. G.</creatorcontrib><creatorcontrib>Stoev, S. A.</creatorcontrib><creatorcontrib>Michailidis, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kallitsis, M. G.</au><au>Stoev, S. A.</au><au>Michailidis, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>61</volume><issue>8</issue><spage>2088</spage><epage>2103</epage><pages>2088-2103</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The robustness and integrity of IP networks require efficient tools for traffic monitoring and analysis, which scale well with traffic volume and network size. We address the problem of optimal large-scale monitoring of computer networks under resource constraints. Specifically, we consider the task of selecting the "best" subset of at most K links to monitor, so as to optimally predict the traffic load at the remaining ones. Our notion of optimality is quantified in terms of the statistical error of network traffic predictors. The optimal monitoring problem at hand is akin to certain combinatorial constraints, which render the algorithms seeking the exact solution impractical. We develop a number of fast algorithms that improve upon existing algorithms in terms of computational complexity and accuracy. Our algorithms exploit the geometry of principal component analysis, which also leads us to new types of theoretical bounds on the prediction error. Finally, these algorithms are amenable to randomization, where the best of several parallel independent instances often yields the exact optimal solution. Their performance is illustrated and evaluated on simulated and real-network traces.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2242066</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2013-04, Vol.61 (8), p.2088-2103
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_6418047
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Applied sciences
Approximation algorithms
Combinatorial analysis
computer networks
Covariance matrix
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Information, signal and communications theory
IP network
Links
Monitoring
Network topology
Networks
Optimization
Prediction algorithms
prediction methods
Principal component analysis
Signal and communications theory
signal processing algorithms
Signal, noise
Studies
Telecommunications and information theory
Traffic engineering
Traffic flow
title Fast Algorithms for Optimal Link Selection in Large-Scale Network Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Algorithms%20for%20Optimal%20Link%20Selection%20in%20Large-Scale%20Network%20Monitoring&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kallitsis,%20M.%20G.&rft.date=2013-04-01&rft.volume=61&rft.issue=8&rft.spage=2088&rft.epage=2103&rft.pages=2088-2103&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2242066&rft_dat=%3Cproquest_RIE%3E1365124603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325558631&rft_id=info:pmid/&rft_ieee_id=6418047&rfr_iscdi=true