Intelligent system for predicting wireless sensor network performance in on-demand deployments

The need for advanced tools that provide efficient design and planning of on-demand deployment of wireless sensor networks (WSN) is critical for meeting our nation's demand for increased intelligence, reconnaissance, and surveillance in numerous safety-critical applications. For practical appli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Otero, Carlos E., Kostanic, I., Peter, A., Ejnioui, A., Otero, L. Daniel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Otero, Carlos E.
Kostanic, I.
Peter, A.
Ejnioui, A.
Otero, L. Daniel
description The need for advanced tools that provide efficient design and planning of on-demand deployment of wireless sensor networks (WSN) is critical for meeting our nation's demand for increased intelligence, reconnaissance, and surveillance in numerous safety-critical applications. For practical applications, WSN deployments can be time-consuming and error-prone, since they have the utmost challenge of guaranteeing connectivity and proper area coverage upon deployment. This creates an unmet demand for decision-support systems that help manage this complex process. This paper presents research-in-progress to develop an advanced decision-support system for predicting the optimal deployment of wireless sensor nodes within an area of interest. The proposed research will have significant impact on the future application of WSN technology, specifically in the emergency response, environmental quality, national security, and engineering education domains.
doi_str_mv 10.1109/ICOS.2012.6417620
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6417620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6417620</ieee_id><sourcerecordid>6417620</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a5ddc4ce77b79c67d2378960bc10e9b69e7ee4686cfb008febbdf28fa164a3cc3</originalsourceid><addsrcrecordid>eNpFkMtKxDAYhSMiqOM8gLjJC3T806ZJs5TipTAwC2fhyqFJ_g7RNi1JYOjbW3BgVoePc1kcQh4ZbBgD9dzUu89NDizfCM6kyOGK3DMuZMGAl1_XF-Dslqxj_AGApSg4lHfku_EJ-94d0Sca55hwoN0Y6BTQOpOcP9KTC9hjjDSij4vlMZ3G8EsnDEtyaL1B6jwdfWZxIUstTv04D8tifCA3XdtHXJ91RfZvr_v6I9vu3pv6ZZs5BSlrS2sNNyillsoIafNCVkqANgxQaaFQInJRCdNpgKpDrW2XV13LBG8LY4oVefqfdYh4mIIb2jAfzncUf_B9Vzc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intelligent system for predicting wireless sensor network performance in on-demand deployments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Otero, Carlos E. ; Kostanic, I. ; Peter, A. ; Ejnioui, A. ; Otero, L. Daniel</creator><creatorcontrib>Otero, Carlos E. ; Kostanic, I. ; Peter, A. ; Ejnioui, A. ; Otero, L. Daniel</creatorcontrib><description>The need for advanced tools that provide efficient design and planning of on-demand deployment of wireless sensor networks (WSN) is critical for meeting our nation's demand for increased intelligence, reconnaissance, and surveillance in numerous safety-critical applications. For practical applications, WSN deployments can be time-consuming and error-prone, since they have the utmost challenge of guaranteeing connectivity and proper area coverage upon deployment. This creates an unmet demand for decision-support systems that help manage this complex process. This paper presents research-in-progress to develop an advanced decision-support system for predicting the optimal deployment of wireless sensor nodes within an area of interest. The proposed research will have significant impact on the future application of WSN technology, specifically in the emergency response, environmental quality, national security, and engineering education domains.</description><identifier>ISBN: 1467310441</identifier><identifier>ISBN: 9781467310444</identifier><identifier>EISBN: 146731045X</identifier><identifier>EISBN: 1467310468</identifier><identifier>EISBN: 9781467310468</identifier><identifier>EISBN: 9781467310451</identifier><identifier>DOI: 10.1109/ICOS.2012.6417620</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; deployments ; Engines ; image processing ; Loss measurement ; machine learning ; modeling and simulation ; Planning ; Radio frequency ; radio frequency propagation ; Software ; Wireless sensor networks</subject><ispartof>2012 IEEE Conference on Open Systems, 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6417620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6417620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Otero, Carlos E.</creatorcontrib><creatorcontrib>Kostanic, I.</creatorcontrib><creatorcontrib>Peter, A.</creatorcontrib><creatorcontrib>Ejnioui, A.</creatorcontrib><creatorcontrib>Otero, L. Daniel</creatorcontrib><title>Intelligent system for predicting wireless sensor network performance in on-demand deployments</title><title>2012 IEEE Conference on Open Systems</title><addtitle>ICOS</addtitle><description>The need for advanced tools that provide efficient design and planning of on-demand deployment of wireless sensor networks (WSN) is critical for meeting our nation's demand for increased intelligence, reconnaissance, and surveillance in numerous safety-critical applications. For practical applications, WSN deployments can be time-consuming and error-prone, since they have the utmost challenge of guaranteeing connectivity and proper area coverage upon deployment. This creates an unmet demand for decision-support systems that help manage this complex process. This paper presents research-in-progress to develop an advanced decision-support system for predicting the optimal deployment of wireless sensor nodes within an area of interest. The proposed research will have significant impact on the future application of WSN technology, specifically in the emergency response, environmental quality, national security, and engineering education domains.</description><subject>Data models</subject><subject>deployments</subject><subject>Engines</subject><subject>image processing</subject><subject>Loss measurement</subject><subject>machine learning</subject><subject>modeling and simulation</subject><subject>Planning</subject><subject>Radio frequency</subject><subject>radio frequency propagation</subject><subject>Software</subject><subject>Wireless sensor networks</subject><isbn>1467310441</isbn><isbn>9781467310444</isbn><isbn>146731045X</isbn><isbn>1467310468</isbn><isbn>9781467310468</isbn><isbn>9781467310451</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtKxDAYhSMiqOM8gLjJC3T806ZJs5TipTAwC2fhyqFJ_g7RNi1JYOjbW3BgVoePc1kcQh4ZbBgD9dzUu89NDizfCM6kyOGK3DMuZMGAl1_XF-Dslqxj_AGApSg4lHfku_EJ-94d0Sca55hwoN0Y6BTQOpOcP9KTC9hjjDSij4vlMZ3G8EsnDEtyaL1B6jwdfWZxIUstTv04D8tifCA3XdtHXJ91RfZvr_v6I9vu3pv6ZZs5BSlrS2sNNyillsoIafNCVkqANgxQaaFQInJRCdNpgKpDrW2XV13LBG8LY4oVefqfdYh4mIIb2jAfzncUf_B9Vzc</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Otero, Carlos E.</creator><creator>Kostanic, I.</creator><creator>Peter, A.</creator><creator>Ejnioui, A.</creator><creator>Otero, L. Daniel</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Intelligent system for predicting wireless sensor network performance in on-demand deployments</title><author>Otero, Carlos E. ; Kostanic, I. ; Peter, A. ; Ejnioui, A. ; Otero, L. Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a5ddc4ce77b79c67d2378960bc10e9b69e7ee4686cfb008febbdf28fa164a3cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Data models</topic><topic>deployments</topic><topic>Engines</topic><topic>image processing</topic><topic>Loss measurement</topic><topic>machine learning</topic><topic>modeling and simulation</topic><topic>Planning</topic><topic>Radio frequency</topic><topic>radio frequency propagation</topic><topic>Software</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Otero, Carlos E.</creatorcontrib><creatorcontrib>Kostanic, I.</creatorcontrib><creatorcontrib>Peter, A.</creatorcontrib><creatorcontrib>Ejnioui, A.</creatorcontrib><creatorcontrib>Otero, L. Daniel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Otero, Carlos E.</au><au>Kostanic, I.</au><au>Peter, A.</au><au>Ejnioui, A.</au><au>Otero, L. Daniel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intelligent system for predicting wireless sensor network performance in on-demand deployments</atitle><btitle>2012 IEEE Conference on Open Systems</btitle><stitle>ICOS</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1467310441</isbn><isbn>9781467310444</isbn><eisbn>146731045X</eisbn><eisbn>1467310468</eisbn><eisbn>9781467310468</eisbn><eisbn>9781467310451</eisbn><abstract>The need for advanced tools that provide efficient design and planning of on-demand deployment of wireless sensor networks (WSN) is critical for meeting our nation's demand for increased intelligence, reconnaissance, and surveillance in numerous safety-critical applications. For practical applications, WSN deployments can be time-consuming and error-prone, since they have the utmost challenge of guaranteeing connectivity and proper area coverage upon deployment. This creates an unmet demand for decision-support systems that help manage this complex process. This paper presents research-in-progress to develop an advanced decision-support system for predicting the optimal deployment of wireless sensor nodes within an area of interest. The proposed research will have significant impact on the future application of WSN technology, specifically in the emergency response, environmental quality, national security, and engineering education domains.</abstract><pub>IEEE</pub><doi>10.1109/ICOS.2012.6417620</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467310441
ispartof 2012 IEEE Conference on Open Systems, 2012, p.1-6
issn
language eng
recordid cdi_ieee_primary_6417620
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data models
deployments
Engines
image processing
Loss measurement
machine learning
modeling and simulation
Planning
Radio frequency
radio frequency propagation
Software
Wireless sensor networks
title Intelligent system for predicting wireless sensor network performance in on-demand deployments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intelligent%20system%20for%20predicting%20wireless%20sensor%20network%20performance%20in%20on-demand%20deployments&rft.btitle=2012%20IEEE%20Conference%20on%20Open%20Systems&rft.au=Otero,%20Carlos%20E.&rft.date=2012-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1467310441&rft.isbn_list=9781467310444&rft_id=info:doi/10.1109/ICOS.2012.6417620&rft_dat=%3Cieee_6IE%3E6417620%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146731045X&rft.eisbn_list=1467310468&rft.eisbn_list=9781467310468&rft.eisbn_list=9781467310451&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6417620&rfr_iscdi=true