Intelligent system for predicting wireless sensor network performance in on-demand deployments
The need for advanced tools that provide efficient design and planning of on-demand deployment of wireless sensor networks (WSN) is critical for meeting our nation's demand for increased intelligence, reconnaissance, and surveillance in numerous safety-critical applications. For practical appli...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Otero, Carlos E. Kostanic, I. Peter, A. Ejnioui, A. Otero, L. Daniel |
description | The need for advanced tools that provide efficient design and planning of on-demand deployment of wireless sensor networks (WSN) is critical for meeting our nation's demand for increased intelligence, reconnaissance, and surveillance in numerous safety-critical applications. For practical applications, WSN deployments can be time-consuming and error-prone, since they have the utmost challenge of guaranteeing connectivity and proper area coverage upon deployment. This creates an unmet demand for decision-support systems that help manage this complex process. This paper presents research-in-progress to develop an advanced decision-support system for predicting the optimal deployment of wireless sensor nodes within an area of interest. The proposed research will have significant impact on the future application of WSN technology, specifically in the emergency response, environmental quality, national security, and engineering education domains. |
doi_str_mv | 10.1109/ICOS.2012.6417620 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6417620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6417620</ieee_id><sourcerecordid>6417620</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a5ddc4ce77b79c67d2378960bc10e9b69e7ee4686cfb008febbdf28fa164a3cc3</originalsourceid><addsrcrecordid>eNpFkMtKxDAYhSMiqOM8gLjJC3T806ZJs5TipTAwC2fhyqFJ_g7RNi1JYOjbW3BgVoePc1kcQh4ZbBgD9dzUu89NDizfCM6kyOGK3DMuZMGAl1_XF-Dslqxj_AGApSg4lHfku_EJ-94d0Sca55hwoN0Y6BTQOpOcP9KTC9hjjDSij4vlMZ3G8EsnDEtyaL1B6jwdfWZxIUstTv04D8tifCA3XdtHXJ91RfZvr_v6I9vu3pv6ZZs5BSlrS2sNNyillsoIafNCVkqANgxQaaFQInJRCdNpgKpDrW2XV13LBG8LY4oVefqfdYh4mIIb2jAfzncUf_B9Vzc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intelligent system for predicting wireless sensor network performance in on-demand deployments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Otero, Carlos E. ; Kostanic, I. ; Peter, A. ; Ejnioui, A. ; Otero, L. Daniel</creator><creatorcontrib>Otero, Carlos E. ; Kostanic, I. ; Peter, A. ; Ejnioui, A. ; Otero, L. Daniel</creatorcontrib><description>The need for advanced tools that provide efficient design and planning of on-demand deployment of wireless sensor networks (WSN) is critical for meeting our nation's demand for increased intelligence, reconnaissance, and surveillance in numerous safety-critical applications. For practical applications, WSN deployments can be time-consuming and error-prone, since they have the utmost challenge of guaranteeing connectivity and proper area coverage upon deployment. This creates an unmet demand for decision-support systems that help manage this complex process. This paper presents research-in-progress to develop an advanced decision-support system for predicting the optimal deployment of wireless sensor nodes within an area of interest. The proposed research will have significant impact on the future application of WSN technology, specifically in the emergency response, environmental quality, national security, and engineering education domains.</description><identifier>ISBN: 1467310441</identifier><identifier>ISBN: 9781467310444</identifier><identifier>EISBN: 146731045X</identifier><identifier>EISBN: 1467310468</identifier><identifier>EISBN: 9781467310468</identifier><identifier>EISBN: 9781467310451</identifier><identifier>DOI: 10.1109/ICOS.2012.6417620</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; deployments ; Engines ; image processing ; Loss measurement ; machine learning ; modeling and simulation ; Planning ; Radio frequency ; radio frequency propagation ; Software ; Wireless sensor networks</subject><ispartof>2012 IEEE Conference on Open Systems, 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6417620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6417620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Otero, Carlos E.</creatorcontrib><creatorcontrib>Kostanic, I.</creatorcontrib><creatorcontrib>Peter, A.</creatorcontrib><creatorcontrib>Ejnioui, A.</creatorcontrib><creatorcontrib>Otero, L. Daniel</creatorcontrib><title>Intelligent system for predicting wireless sensor network performance in on-demand deployments</title><title>2012 IEEE Conference on Open Systems</title><addtitle>ICOS</addtitle><description>The need for advanced tools that provide efficient design and planning of on-demand deployment of wireless sensor networks (WSN) is critical for meeting our nation's demand for increased intelligence, reconnaissance, and surveillance in numerous safety-critical applications. For practical applications, WSN deployments can be time-consuming and error-prone, since they have the utmost challenge of guaranteeing connectivity and proper area coverage upon deployment. This creates an unmet demand for decision-support systems that help manage this complex process. This paper presents research-in-progress to develop an advanced decision-support system for predicting the optimal deployment of wireless sensor nodes within an area of interest. The proposed research will have significant impact on the future application of WSN technology, specifically in the emergency response, environmental quality, national security, and engineering education domains.</description><subject>Data models</subject><subject>deployments</subject><subject>Engines</subject><subject>image processing</subject><subject>Loss measurement</subject><subject>machine learning</subject><subject>modeling and simulation</subject><subject>Planning</subject><subject>Radio frequency</subject><subject>radio frequency propagation</subject><subject>Software</subject><subject>Wireless sensor networks</subject><isbn>1467310441</isbn><isbn>9781467310444</isbn><isbn>146731045X</isbn><isbn>1467310468</isbn><isbn>9781467310468</isbn><isbn>9781467310451</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtKxDAYhSMiqOM8gLjJC3T806ZJs5TipTAwC2fhyqFJ_g7RNi1JYOjbW3BgVoePc1kcQh4ZbBgD9dzUu89NDizfCM6kyOGK3DMuZMGAl1_XF-Dslqxj_AGApSg4lHfku_EJ-94d0Sca55hwoN0Y6BTQOpOcP9KTC9hjjDSij4vlMZ3G8EsnDEtyaL1B6jwdfWZxIUstTv04D8tifCA3XdtHXJ91RfZvr_v6I9vu3pv6ZZs5BSlrS2sNNyillsoIafNCVkqANgxQaaFQInJRCdNpgKpDrW2XV13LBG8LY4oVefqfdYh4mIIb2jAfzncUf_B9Vzc</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Otero, Carlos E.</creator><creator>Kostanic, I.</creator><creator>Peter, A.</creator><creator>Ejnioui, A.</creator><creator>Otero, L. Daniel</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Intelligent system for predicting wireless sensor network performance in on-demand deployments</title><author>Otero, Carlos E. ; Kostanic, I. ; Peter, A. ; Ejnioui, A. ; Otero, L. Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a5ddc4ce77b79c67d2378960bc10e9b69e7ee4686cfb008febbdf28fa164a3cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Data models</topic><topic>deployments</topic><topic>Engines</topic><topic>image processing</topic><topic>Loss measurement</topic><topic>machine learning</topic><topic>modeling and simulation</topic><topic>Planning</topic><topic>Radio frequency</topic><topic>radio frequency propagation</topic><topic>Software</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Otero, Carlos E.</creatorcontrib><creatorcontrib>Kostanic, I.</creatorcontrib><creatorcontrib>Peter, A.</creatorcontrib><creatorcontrib>Ejnioui, A.</creatorcontrib><creatorcontrib>Otero, L. Daniel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Otero, Carlos E.</au><au>Kostanic, I.</au><au>Peter, A.</au><au>Ejnioui, A.</au><au>Otero, L. Daniel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intelligent system for predicting wireless sensor network performance in on-demand deployments</atitle><btitle>2012 IEEE Conference on Open Systems</btitle><stitle>ICOS</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1467310441</isbn><isbn>9781467310444</isbn><eisbn>146731045X</eisbn><eisbn>1467310468</eisbn><eisbn>9781467310468</eisbn><eisbn>9781467310451</eisbn><abstract>The need for advanced tools that provide efficient design and planning of on-demand deployment of wireless sensor networks (WSN) is critical for meeting our nation's demand for increased intelligence, reconnaissance, and surveillance in numerous safety-critical applications. For practical applications, WSN deployments can be time-consuming and error-prone, since they have the utmost challenge of guaranteeing connectivity and proper area coverage upon deployment. This creates an unmet demand for decision-support systems that help manage this complex process. This paper presents research-in-progress to develop an advanced decision-support system for predicting the optimal deployment of wireless sensor nodes within an area of interest. The proposed research will have significant impact on the future application of WSN technology, specifically in the emergency response, environmental quality, national security, and engineering education domains.</abstract><pub>IEEE</pub><doi>10.1109/ICOS.2012.6417620</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467310441 |
ispartof | 2012 IEEE Conference on Open Systems, 2012, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6417620 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data models deployments Engines image processing Loss measurement machine learning modeling and simulation Planning Radio frequency radio frequency propagation Software Wireless sensor networks |
title | Intelligent system for predicting wireless sensor network performance in on-demand deployments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intelligent%20system%20for%20predicting%20wireless%20sensor%20network%20performance%20in%20on-demand%20deployments&rft.btitle=2012%20IEEE%20Conference%20on%20Open%20Systems&rft.au=Otero,%20Carlos%20E.&rft.date=2012-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1467310441&rft.isbn_list=9781467310444&rft_id=info:doi/10.1109/ICOS.2012.6417620&rft_dat=%3Cieee_6IE%3E6417620%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=146731045X&rft.eisbn_list=1467310468&rft.eisbn_list=9781467310468&rft.eisbn_list=9781467310451&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6417620&rfr_iscdi=true |