Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs

Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yoshizawa, H., Takahashi, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 130
container_title
container_volume
creator Yoshizawa, H.
Takahashi, D.
description Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for the compressed row storage (CRS) format depends greatly on optimal selection of a parameter, and we propose an efficient algorithm for the automatic selection of the optimal parameter. Kernel SpMV for the CRS format using automatic parameter selection achieves up to approximately 26% improvement over NVIDIA's CUSPARSE library. The conjugate gradient method is the most popular iterative method for solving sparse systems of linear equations. Kernel SpMV makes up the bulk of the conjugate gradient method calculations. By optimizing SpMV using our approach, the conjugate gradient method performs up to approximately 10% better than CULA Sparse.
doi_str_mv 10.1109/ICCSE.2012.28
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6417285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6417285</ieee_id><sourcerecordid>6417285</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-a588229b30826fd1a9c1ffbf3bb0ef5c744379da84fbd4b064e14fee330878f93</originalsourceid><addsrcrecordid>eNotjEtLw0AYRUdEUGqWrtzMH0icb96zLKGthVbFtG7LTDIjI2kS8gD99w3q6nIP91yEHoBkAMQ8bfO8WGWUAM2ovkKJUZooaQQ3wM31bwcuFRMgBb1FyTB8EUKAMEGUuUMvy2lsz3aMJT5MTWw-cRtw0dl-8Hhvxz5-px--HNse76d6jF0dy3ncNjjMKH8v8LrtZx3PZPN2HO7RTbD14JP_XKDjenXIn9Pd62abL3dppBzG1AqtKTWOEU1lqMCaEkJwgTlHfBCl4pwpU1nNg6u4I5J74MF7NgtKB8MW6PHvN3rvT10fz7b_OUkOimrBLi7ETwM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yoshizawa, H. ; Takahashi, D.</creator><creatorcontrib>Yoshizawa, H. ; Takahashi, D.</creatorcontrib><description>Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for the compressed row storage (CRS) format depends greatly on optimal selection of a parameter, and we propose an efficient algorithm for the automatic selection of the optimal parameter. Kernel SpMV for the CRS format using automatic parameter selection achieves up to approximately 26% improvement over NVIDIA's CUSPARSE library. The conjugate gradient method is the most popular iterative method for solving sparse systems of linear equations. Kernel SpMV makes up the bulk of the conjugate gradient method calculations. By optimizing SpMV using our approach, the conjugate gradient method performs up to approximately 10% better than CULA Sparse.</description><identifier>ISBN: 9781467351652</identifier><identifier>ISBN: 1467351652</identifier><identifier>EISBN: 9780769549149</identifier><identifier>EISBN: 0769549144</identifier><identifier>DOI: 10.1109/ICCSE.2012.28</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; CRS ; CUDA ; GPGPU ; Graphics processing units ; Instruction sets ; Iterative methods ; Kernel ; Sparse matrices ; SpMV ; Vectors</subject><ispartof>2012 IEEE 15th International Conference on Computational Science and Engineering, 2012, p.130-136</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6417285$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6417285$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yoshizawa, H.</creatorcontrib><creatorcontrib>Takahashi, D.</creatorcontrib><title>Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs</title><title>2012 IEEE 15th International Conference on Computational Science and Engineering</title><addtitle>cse</addtitle><description>Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for the compressed row storage (CRS) format depends greatly on optimal selection of a parameter, and we propose an efficient algorithm for the automatic selection of the optimal parameter. Kernel SpMV for the CRS format using automatic parameter selection achieves up to approximately 26% improvement over NVIDIA's CUSPARSE library. The conjugate gradient method is the most popular iterative method for solving sparse systems of linear equations. Kernel SpMV makes up the bulk of the conjugate gradient method calculations. By optimizing SpMV using our approach, the conjugate gradient method performs up to approximately 10% better than CULA Sparse.</description><subject>Acceleration</subject><subject>CRS</subject><subject>CUDA</subject><subject>GPGPU</subject><subject>Graphics processing units</subject><subject>Instruction sets</subject><subject>Iterative methods</subject><subject>Kernel</subject><subject>Sparse matrices</subject><subject>SpMV</subject><subject>Vectors</subject><isbn>9781467351652</isbn><isbn>1467351652</isbn><isbn>9780769549149</isbn><isbn>0769549144</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLw0AYRUdEUGqWrtzMH0icb96zLKGthVbFtG7LTDIjI2kS8gD99w3q6nIP91yEHoBkAMQ8bfO8WGWUAM2ovkKJUZooaQQ3wM31bwcuFRMgBb1FyTB8EUKAMEGUuUMvy2lsz3aMJT5MTWw-cRtw0dl-8Hhvxz5-px--HNse76d6jF0dy3ncNjjMKH8v8LrtZx3PZPN2HO7RTbD14JP_XKDjenXIn9Pd62abL3dppBzG1AqtKTWOEU1lqMCaEkJwgTlHfBCl4pwpU1nNg6u4I5J74MF7NgtKB8MW6PHvN3rvT10fz7b_OUkOimrBLi7ETwM</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Yoshizawa, H.</creator><creator>Takahashi, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs</title><author>Yoshizawa, H. ; Takahashi, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-a588229b30826fd1a9c1ffbf3bb0ef5c744379da84fbd4b064e14fee330878f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>CRS</topic><topic>CUDA</topic><topic>GPGPU</topic><topic>Graphics processing units</topic><topic>Instruction sets</topic><topic>Iterative methods</topic><topic>Kernel</topic><topic>Sparse matrices</topic><topic>SpMV</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoshizawa, H.</creatorcontrib><creatorcontrib>Takahashi, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoshizawa, H.</au><au>Takahashi, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs</atitle><btitle>2012 IEEE 15th International Conference on Computational Science and Engineering</btitle><stitle>cse</stitle><date>2012-12</date><risdate>2012</risdate><spage>130</spage><epage>136</epage><pages>130-136</pages><isbn>9781467351652</isbn><isbn>1467351652</isbn><eisbn>9780769549149</eisbn><eisbn>0769549144</eisbn><coden>IEEPAD</coden><abstract>Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for the compressed row storage (CRS) format depends greatly on optimal selection of a parameter, and we propose an efficient algorithm for the automatic selection of the optimal parameter. Kernel SpMV for the CRS format using automatic parameter selection achieves up to approximately 26% improvement over NVIDIA's CUSPARSE library. The conjugate gradient method is the most popular iterative method for solving sparse systems of linear equations. Kernel SpMV makes up the bulk of the conjugate gradient method calculations. By optimizing SpMV using our approach, the conjugate gradient method performs up to approximately 10% better than CULA Sparse.</abstract><pub>IEEE</pub><doi>10.1109/ICCSE.2012.28</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467351652
ispartof 2012 IEEE 15th International Conference on Computational Science and Engineering, 2012, p.130-136
issn
language eng
recordid cdi_ieee_primary_6417285
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
CRS
CUDA
GPGPU
Graphics processing units
Instruction sets
Iterative methods
Kernel
Sparse matrices
SpMV
Vectors
title Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Tuning%20of%20Sparse%20Matrix-Vector%20Multiplication%20for%20CRS%20Format%20on%20GPUs&rft.btitle=2012%20IEEE%2015th%20International%20Conference%20on%20Computational%20Science%20and%20Engineering&rft.au=Yoshizawa,%20H.&rft.date=2012-12&rft.spage=130&rft.epage=136&rft.pages=130-136&rft.isbn=9781467351652&rft.isbn_list=1467351652&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCSE.2012.28&rft_dat=%3Cieee_6IE%3E6417285%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549149&rft.eisbn_list=0769549144&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6417285&rfr_iscdi=true