Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs
Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | |
container_start_page | 130 |
container_title | |
container_volume | |
creator | Yoshizawa, H. Takahashi, D. |
description | Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for the compressed row storage (CRS) format depends greatly on optimal selection of a parameter, and we propose an efficient algorithm for the automatic selection of the optimal parameter. Kernel SpMV for the CRS format using automatic parameter selection achieves up to approximately 26% improvement over NVIDIA's CUSPARSE library. The conjugate gradient method is the most popular iterative method for solving sparse systems of linear equations. Kernel SpMV makes up the bulk of the conjugate gradient method calculations. By optimizing SpMV using our approach, the conjugate gradient method performs up to approximately 10% better than CULA Sparse. |
doi_str_mv | 10.1109/ICCSE.2012.28 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6417285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6417285</ieee_id><sourcerecordid>6417285</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-a588229b30826fd1a9c1ffbf3bb0ef5c744379da84fbd4b064e14fee330878f93</originalsourceid><addsrcrecordid>eNotjEtLw0AYRUdEUGqWrtzMH0icb96zLKGthVbFtG7LTDIjI2kS8gD99w3q6nIP91yEHoBkAMQ8bfO8WGWUAM2ovkKJUZooaQQ3wM31bwcuFRMgBb1FyTB8EUKAMEGUuUMvy2lsz3aMJT5MTWw-cRtw0dl-8Hhvxz5-px--HNse76d6jF0dy3ncNjjMKH8v8LrtZx3PZPN2HO7RTbD14JP_XKDjenXIn9Pd62abL3dppBzG1AqtKTWOEU1lqMCaEkJwgTlHfBCl4pwpU1nNg6u4I5J74MF7NgtKB8MW6PHvN3rvT10fz7b_OUkOimrBLi7ETwM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yoshizawa, H. ; Takahashi, D.</creator><creatorcontrib>Yoshizawa, H. ; Takahashi, D.</creatorcontrib><description>Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for the compressed row storage (CRS) format depends greatly on optimal selection of a parameter, and we propose an efficient algorithm for the automatic selection of the optimal parameter. Kernel SpMV for the CRS format using automatic parameter selection achieves up to approximately 26% improvement over NVIDIA's CUSPARSE library. The conjugate gradient method is the most popular iterative method for solving sparse systems of linear equations. Kernel SpMV makes up the bulk of the conjugate gradient method calculations. By optimizing SpMV using our approach, the conjugate gradient method performs up to approximately 10% better than CULA Sparse.</description><identifier>ISBN: 9781467351652</identifier><identifier>ISBN: 1467351652</identifier><identifier>EISBN: 9780769549149</identifier><identifier>EISBN: 0769549144</identifier><identifier>DOI: 10.1109/ICCSE.2012.28</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; CRS ; CUDA ; GPGPU ; Graphics processing units ; Instruction sets ; Iterative methods ; Kernel ; Sparse matrices ; SpMV ; Vectors</subject><ispartof>2012 IEEE 15th International Conference on Computational Science and Engineering, 2012, p.130-136</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6417285$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6417285$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yoshizawa, H.</creatorcontrib><creatorcontrib>Takahashi, D.</creatorcontrib><title>Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs</title><title>2012 IEEE 15th International Conference on Computational Science and Engineering</title><addtitle>cse</addtitle><description>Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for the compressed row storage (CRS) format depends greatly on optimal selection of a parameter, and we propose an efficient algorithm for the automatic selection of the optimal parameter. Kernel SpMV for the CRS format using automatic parameter selection achieves up to approximately 26% improvement over NVIDIA's CUSPARSE library. The conjugate gradient method is the most popular iterative method for solving sparse systems of linear equations. Kernel SpMV makes up the bulk of the conjugate gradient method calculations. By optimizing SpMV using our approach, the conjugate gradient method performs up to approximately 10% better than CULA Sparse.</description><subject>Acceleration</subject><subject>CRS</subject><subject>CUDA</subject><subject>GPGPU</subject><subject>Graphics processing units</subject><subject>Instruction sets</subject><subject>Iterative methods</subject><subject>Kernel</subject><subject>Sparse matrices</subject><subject>SpMV</subject><subject>Vectors</subject><isbn>9781467351652</isbn><isbn>1467351652</isbn><isbn>9780769549149</isbn><isbn>0769549144</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLw0AYRUdEUGqWrtzMH0icb96zLKGthVbFtG7LTDIjI2kS8gD99w3q6nIP91yEHoBkAMQ8bfO8WGWUAM2ovkKJUZooaQQ3wM31bwcuFRMgBb1FyTB8EUKAMEGUuUMvy2lsz3aMJT5MTWw-cRtw0dl-8Hhvxz5-px--HNse76d6jF0dy3ncNjjMKH8v8LrtZx3PZPN2HO7RTbD14JP_XKDjenXIn9Pd62abL3dppBzG1AqtKTWOEU1lqMCaEkJwgTlHfBCl4pwpU1nNg6u4I5J74MF7NgtKB8MW6PHvN3rvT10fz7b_OUkOimrBLi7ETwM</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Yoshizawa, H.</creator><creator>Takahashi, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs</title><author>Yoshizawa, H. ; Takahashi, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-a588229b30826fd1a9c1ffbf3bb0ef5c744379da84fbd4b064e14fee330878f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>CRS</topic><topic>CUDA</topic><topic>GPGPU</topic><topic>Graphics processing units</topic><topic>Instruction sets</topic><topic>Iterative methods</topic><topic>Kernel</topic><topic>Sparse matrices</topic><topic>SpMV</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoshizawa, H.</creatorcontrib><creatorcontrib>Takahashi, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoshizawa, H.</au><au>Takahashi, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs</atitle><btitle>2012 IEEE 15th International Conference on Computational Science and Engineering</btitle><stitle>cse</stitle><date>2012-12</date><risdate>2012</risdate><spage>130</spage><epage>136</epage><pages>130-136</pages><isbn>9781467351652</isbn><isbn>1467351652</isbn><eisbn>9780769549149</eisbn><eisbn>0769549144</eisbn><coden>IEEPAD</coden><abstract>Performance of sparse matrix-vector multiplication (SpMV) on GPUs is highly dependent on the structure of the sparse matrix used in the computation, the computing environment, and the selection of certain parameters. In this paper, we show that the performance achieved using kernel SpMV on GPUs for the compressed row storage (CRS) format depends greatly on optimal selection of a parameter, and we propose an efficient algorithm for the automatic selection of the optimal parameter. Kernel SpMV for the CRS format using automatic parameter selection achieves up to approximately 26% improvement over NVIDIA's CUSPARSE library. The conjugate gradient method is the most popular iterative method for solving sparse systems of linear equations. Kernel SpMV makes up the bulk of the conjugate gradient method calculations. By optimizing SpMV using our approach, the conjugate gradient method performs up to approximately 10% better than CULA Sparse.</abstract><pub>IEEE</pub><doi>10.1109/ICCSE.2012.28</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467351652 |
ispartof | 2012 IEEE 15th International Conference on Computational Science and Engineering, 2012, p.130-136 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6417285 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration CRS CUDA GPGPU Graphics processing units Instruction sets Iterative methods Kernel Sparse matrices SpMV Vectors |
title | Automatic Tuning of Sparse Matrix-Vector Multiplication for CRS Format on GPUs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Tuning%20of%20Sparse%20Matrix-Vector%20Multiplication%20for%20CRS%20Format%20on%20GPUs&rft.btitle=2012%20IEEE%2015th%20International%20Conference%20on%20Computational%20Science%20and%20Engineering&rft.au=Yoshizawa,%20H.&rft.date=2012-12&rft.spage=130&rft.epage=136&rft.pages=130-136&rft.isbn=9781467351652&rft.isbn_list=1467351652&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCSE.2012.28&rft_dat=%3Cieee_6IE%3E6417285%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549149&rft.eisbn_list=0769549144&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6417285&rfr_iscdi=true |