Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant

In order to guarantee reliable industrial power supply, predictive maintenance for generator becomes highly necessary. This measure is expected to reduce disruptive generator due to degraded insulation of its stator winding. Partial discharge (PD) is responsible for this disadvantage condition. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Darwanto, D., Hamdani, D., Hariyanto, D. D., Karyawan, O. H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1006
container_issue
container_start_page 1003
container_title
container_volume
creator Darwanto, D.
Hamdani, D.
Hariyanto, D. D.
Karyawan, O. H.
description In order to guarantee reliable industrial power supply, predictive maintenance for generator becomes highly necessary. This measure is expected to reduce disruptive generator due to degraded insulation of its stator winding. Partial discharge (PD) is responsible for this disadvantage condition. The objective of this paper is present partial discharge (PD) analysis using statistical methods for predictive maintenance of generator in geothermal power plant. TGA-B IRIS was used for online PD measurement. The measurement data is analysed statistically to forecast the time of critical condition of stator winding of generator using vector autoregressive (VAR) method. The analysis result became the basis of predictive maintenance.
doi_str_mv 10.1109/CMD.2012.6416325
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6416325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6416325</ieee_id><sourcerecordid>6416325</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6de267277561a4c1fd0fb42f3d54b802eb442863ee47329e0d101d09118e03f03</originalsourceid><addsrcrecordid>eNo1kE9LAzEQxSMiqLV3wUu-QOvkzya7R6lahYoH9Vymm0kb2e4uSVCKX95trafHG97vwTzGrgVMhYDqdvZyP5Ug5NRoYZQsTti4sqXQxioBoixO2eW_qeCcjVP6BIABNbZSF-znLWMOKYcaG44tNrsUEu887zHmMNxcSPUG45r4XrDOFA_xxH0XeR_JhTqHL-JbDG2mFtua9vyaWoqYh8zBdHlDcTv09d03DVyDbb5iZx6bROOjjtjH48P77GmyeJ0_z-4WkyBskSfGkTRWWlsYgboW3oFfaemVK_SqBEkrrWVpFJG2SlYEbvjVQSVESaA8qBG7-esNRLTsY9hi3C2Pe6lfBENgdQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Darwanto, D. ; Hamdani, D. ; Hariyanto, D. D. ; Karyawan, O. H.</creator><creatorcontrib>Darwanto, D. ; Hamdani, D. ; Hariyanto, D. D. ; Karyawan, O. H.</creatorcontrib><description>In order to guarantee reliable industrial power supply, predictive maintenance for generator becomes highly necessary. This measure is expected to reduce disruptive generator due to degraded insulation of its stator winding. Partial discharge (PD) is responsible for this disadvantage condition. The objective of this paper is present partial discharge (PD) analysis using statistical methods for predictive maintenance of generator in geothermal power plant. TGA-B IRIS was used for online PD measurement. The measurement data is analysed statistically to forecast the time of critical condition of stator winding of generator using vector autoregressive (VAR) method. The analysis result became the basis of predictive maintenance.</description><identifier>ISBN: 1467310190</identifier><identifier>ISBN: 9781467310192</identifier><identifier>EISBN: 9781467310185</identifier><identifier>EISBN: 1467310204</identifier><identifier>EISBN: 1467310182</identifier><identifier>EISBN: 9781467310208</identifier><identifier>DOI: 10.1109/CMD.2012.6416325</identifier><language>eng</language><publisher>IEEE</publisher><subject>Correlation ; Generators ; goethermal ; Insulation ; Iris ; partial discharge ; Partial discharges ; predictive maintenance ; Reactive power ; Stator windings ; vector autoregressive</subject><ispartof>2012 IEEE International Conference on Condition Monitoring and Diagnosis, 2012, p.1003-1006</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6416325$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6416325$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Darwanto, D.</creatorcontrib><creatorcontrib>Hamdani, D.</creatorcontrib><creatorcontrib>Hariyanto, D. D.</creatorcontrib><creatorcontrib>Karyawan, O. H.</creatorcontrib><title>Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant</title><title>2012 IEEE International Conference on Condition Monitoring and Diagnosis</title><addtitle>CMD</addtitle><description>In order to guarantee reliable industrial power supply, predictive maintenance for generator becomes highly necessary. This measure is expected to reduce disruptive generator due to degraded insulation of its stator winding. Partial discharge (PD) is responsible for this disadvantage condition. The objective of this paper is present partial discharge (PD) analysis using statistical methods for predictive maintenance of generator in geothermal power plant. TGA-B IRIS was used for online PD measurement. The measurement data is analysed statistically to forecast the time of critical condition of stator winding of generator using vector autoregressive (VAR) method. The analysis result became the basis of predictive maintenance.</description><subject>Correlation</subject><subject>Generators</subject><subject>goethermal</subject><subject>Insulation</subject><subject>Iris</subject><subject>partial discharge</subject><subject>Partial discharges</subject><subject>predictive maintenance</subject><subject>Reactive power</subject><subject>Stator windings</subject><subject>vector autoregressive</subject><isbn>1467310190</isbn><isbn>9781467310192</isbn><isbn>9781467310185</isbn><isbn>1467310204</isbn><isbn>1467310182</isbn><isbn>9781467310208</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE9LAzEQxSMiqLV3wUu-QOvkzya7R6lahYoH9Vymm0kb2e4uSVCKX95trafHG97vwTzGrgVMhYDqdvZyP5Ug5NRoYZQsTti4sqXQxioBoixO2eW_qeCcjVP6BIABNbZSF-znLWMOKYcaG44tNrsUEu887zHmMNxcSPUG45r4XrDOFA_xxH0XeR_JhTqHL-JbDG2mFtua9vyaWoqYh8zBdHlDcTv09d03DVyDbb5iZx6bROOjjtjH48P77GmyeJ0_z-4WkyBskSfGkTRWWlsYgboW3oFfaemVK_SqBEkrrWVpFJG2SlYEbvjVQSVESaA8qBG7-esNRLTsY9hi3C2Pe6lfBENgdQ</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Darwanto, D.</creator><creator>Hamdani, D.</creator><creator>Hariyanto, D. D.</creator><creator>Karyawan, O. H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant</title><author>Darwanto, D. ; Hamdani, D. ; Hariyanto, D. D. ; Karyawan, O. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6de267277561a4c1fd0fb42f3d54b802eb442863ee47329e0d101d09118e03f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Correlation</topic><topic>Generators</topic><topic>goethermal</topic><topic>Insulation</topic><topic>Iris</topic><topic>partial discharge</topic><topic>Partial discharges</topic><topic>predictive maintenance</topic><topic>Reactive power</topic><topic>Stator windings</topic><topic>vector autoregressive</topic><toplevel>online_resources</toplevel><creatorcontrib>Darwanto, D.</creatorcontrib><creatorcontrib>Hamdani, D.</creatorcontrib><creatorcontrib>Hariyanto, D. D.</creatorcontrib><creatorcontrib>Karyawan, O. H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Darwanto, D.</au><au>Hamdani, D.</au><au>Hariyanto, D. D.</au><au>Karyawan, O. H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant</atitle><btitle>2012 IEEE International Conference on Condition Monitoring and Diagnosis</btitle><stitle>CMD</stitle><date>2012-09</date><risdate>2012</risdate><spage>1003</spage><epage>1006</epage><pages>1003-1006</pages><isbn>1467310190</isbn><isbn>9781467310192</isbn><eisbn>9781467310185</eisbn><eisbn>1467310204</eisbn><eisbn>1467310182</eisbn><eisbn>9781467310208</eisbn><abstract>In order to guarantee reliable industrial power supply, predictive maintenance for generator becomes highly necessary. This measure is expected to reduce disruptive generator due to degraded insulation of its stator winding. Partial discharge (PD) is responsible for this disadvantage condition. The objective of this paper is present partial discharge (PD) analysis using statistical methods for predictive maintenance of generator in geothermal power plant. TGA-B IRIS was used for online PD measurement. The measurement data is analysed statistically to forecast the time of critical condition of stator winding of generator using vector autoregressive (VAR) method. The analysis result became the basis of predictive maintenance.</abstract><pub>IEEE</pub><doi>10.1109/CMD.2012.6416325</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467310190
ispartof 2012 IEEE International Conference on Condition Monitoring and Diagnosis, 2012, p.1003-1006
issn
language eng
recordid cdi_ieee_primary_6416325
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Correlation
Generators
goethermal
Insulation
Iris
partial discharge
Partial discharges
predictive maintenance
Reactive power
Stator windings
vector autoregressive
title Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20analysis%20of%20partial%20discharge%20characteristics%20for%20predictive%20maintenance%20of%20generator%20of%20geothermal%20power%20plant&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Condition%20Monitoring%20and%20Diagnosis&rft.au=Darwanto,%20D.&rft.date=2012-09&rft.spage=1003&rft.epage=1006&rft.pages=1003-1006&rft.isbn=1467310190&rft.isbn_list=9781467310192&rft_id=info:doi/10.1109/CMD.2012.6416325&rft_dat=%3Cieee_6IE%3E6416325%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467310185&rft.eisbn_list=1467310204&rft.eisbn_list=1467310182&rft.eisbn_list=9781467310208&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6416325&rfr_iscdi=true