Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant
In order to guarantee reliable industrial power supply, predictive maintenance for generator becomes highly necessary. This measure is expected to reduce disruptive generator due to degraded insulation of its stator winding. Partial discharge (PD) is responsible for this disadvantage condition. The...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1006 |
---|---|
container_issue | |
container_start_page | 1003 |
container_title | |
container_volume | |
creator | Darwanto, D. Hamdani, D. Hariyanto, D. D. Karyawan, O. H. |
description | In order to guarantee reliable industrial power supply, predictive maintenance for generator becomes highly necessary. This measure is expected to reduce disruptive generator due to degraded insulation of its stator winding. Partial discharge (PD) is responsible for this disadvantage condition. The objective of this paper is present partial discharge (PD) analysis using statistical methods for predictive maintenance of generator in geothermal power plant. TGA-B IRIS was used for online PD measurement. The measurement data is analysed statistically to forecast the time of critical condition of stator winding of generator using vector autoregressive (VAR) method. The analysis result became the basis of predictive maintenance. |
doi_str_mv | 10.1109/CMD.2012.6416325 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6416325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6416325</ieee_id><sourcerecordid>6416325</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6de267277561a4c1fd0fb42f3d54b802eb442863ee47329e0d101d09118e03f03</originalsourceid><addsrcrecordid>eNo1kE9LAzEQxSMiqLV3wUu-QOvkzya7R6lahYoH9Vymm0kb2e4uSVCKX95trafHG97vwTzGrgVMhYDqdvZyP5Ug5NRoYZQsTti4sqXQxioBoixO2eW_qeCcjVP6BIABNbZSF-znLWMOKYcaG44tNrsUEu887zHmMNxcSPUG45r4XrDOFA_xxH0XeR_JhTqHL-JbDG2mFtua9vyaWoqYh8zBdHlDcTv09d03DVyDbb5iZx6bROOjjtjH48P77GmyeJ0_z-4WkyBskSfGkTRWWlsYgboW3oFfaemVK_SqBEkrrWVpFJG2SlYEbvjVQSVESaA8qBG7-esNRLTsY9hi3C2Pe6lfBENgdQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Darwanto, D. ; Hamdani, D. ; Hariyanto, D. D. ; Karyawan, O. H.</creator><creatorcontrib>Darwanto, D. ; Hamdani, D. ; Hariyanto, D. D. ; Karyawan, O. H.</creatorcontrib><description>In order to guarantee reliable industrial power supply, predictive maintenance for generator becomes highly necessary. This measure is expected to reduce disruptive generator due to degraded insulation of its stator winding. Partial discharge (PD) is responsible for this disadvantage condition. The objective of this paper is present partial discharge (PD) analysis using statistical methods for predictive maintenance of generator in geothermal power plant. TGA-B IRIS was used for online PD measurement. The measurement data is analysed statistically to forecast the time of critical condition of stator winding of generator using vector autoregressive (VAR) method. The analysis result became the basis of predictive maintenance.</description><identifier>ISBN: 1467310190</identifier><identifier>ISBN: 9781467310192</identifier><identifier>EISBN: 9781467310185</identifier><identifier>EISBN: 1467310204</identifier><identifier>EISBN: 1467310182</identifier><identifier>EISBN: 9781467310208</identifier><identifier>DOI: 10.1109/CMD.2012.6416325</identifier><language>eng</language><publisher>IEEE</publisher><subject>Correlation ; Generators ; goethermal ; Insulation ; Iris ; partial discharge ; Partial discharges ; predictive maintenance ; Reactive power ; Stator windings ; vector autoregressive</subject><ispartof>2012 IEEE International Conference on Condition Monitoring and Diagnosis, 2012, p.1003-1006</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6416325$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6416325$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Darwanto, D.</creatorcontrib><creatorcontrib>Hamdani, D.</creatorcontrib><creatorcontrib>Hariyanto, D. D.</creatorcontrib><creatorcontrib>Karyawan, O. H.</creatorcontrib><title>Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant</title><title>2012 IEEE International Conference on Condition Monitoring and Diagnosis</title><addtitle>CMD</addtitle><description>In order to guarantee reliable industrial power supply, predictive maintenance for generator becomes highly necessary. This measure is expected to reduce disruptive generator due to degraded insulation of its stator winding. Partial discharge (PD) is responsible for this disadvantage condition. The objective of this paper is present partial discharge (PD) analysis using statistical methods for predictive maintenance of generator in geothermal power plant. TGA-B IRIS was used for online PD measurement. The measurement data is analysed statistically to forecast the time of critical condition of stator winding of generator using vector autoregressive (VAR) method. The analysis result became the basis of predictive maintenance.</description><subject>Correlation</subject><subject>Generators</subject><subject>goethermal</subject><subject>Insulation</subject><subject>Iris</subject><subject>partial discharge</subject><subject>Partial discharges</subject><subject>predictive maintenance</subject><subject>Reactive power</subject><subject>Stator windings</subject><subject>vector autoregressive</subject><isbn>1467310190</isbn><isbn>9781467310192</isbn><isbn>9781467310185</isbn><isbn>1467310204</isbn><isbn>1467310182</isbn><isbn>9781467310208</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE9LAzEQxSMiqLV3wUu-QOvkzya7R6lahYoH9Vymm0kb2e4uSVCKX95trafHG97vwTzGrgVMhYDqdvZyP5Ug5NRoYZQsTti4sqXQxioBoixO2eW_qeCcjVP6BIABNbZSF-znLWMOKYcaG44tNrsUEu887zHmMNxcSPUG45r4XrDOFA_xxH0XeR_JhTqHL-JbDG2mFtua9vyaWoqYh8zBdHlDcTv09d03DVyDbb5iZx6bROOjjtjH48P77GmyeJ0_z-4WkyBskSfGkTRWWlsYgboW3oFfaemVK_SqBEkrrWVpFJG2SlYEbvjVQSVESaA8qBG7-esNRLTsY9hi3C2Pe6lfBENgdQ</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Darwanto, D.</creator><creator>Hamdani, D.</creator><creator>Hariyanto, D. D.</creator><creator>Karyawan, O. H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant</title><author>Darwanto, D. ; Hamdani, D. ; Hariyanto, D. D. ; Karyawan, O. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6de267277561a4c1fd0fb42f3d54b802eb442863ee47329e0d101d09118e03f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Correlation</topic><topic>Generators</topic><topic>goethermal</topic><topic>Insulation</topic><topic>Iris</topic><topic>partial discharge</topic><topic>Partial discharges</topic><topic>predictive maintenance</topic><topic>Reactive power</topic><topic>Stator windings</topic><topic>vector autoregressive</topic><toplevel>online_resources</toplevel><creatorcontrib>Darwanto, D.</creatorcontrib><creatorcontrib>Hamdani, D.</creatorcontrib><creatorcontrib>Hariyanto, D. D.</creatorcontrib><creatorcontrib>Karyawan, O. H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Darwanto, D.</au><au>Hamdani, D.</au><au>Hariyanto, D. D.</au><au>Karyawan, O. H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant</atitle><btitle>2012 IEEE International Conference on Condition Monitoring and Diagnosis</btitle><stitle>CMD</stitle><date>2012-09</date><risdate>2012</risdate><spage>1003</spage><epage>1006</epage><pages>1003-1006</pages><isbn>1467310190</isbn><isbn>9781467310192</isbn><eisbn>9781467310185</eisbn><eisbn>1467310204</eisbn><eisbn>1467310182</eisbn><eisbn>9781467310208</eisbn><abstract>In order to guarantee reliable industrial power supply, predictive maintenance for generator becomes highly necessary. This measure is expected to reduce disruptive generator due to degraded insulation of its stator winding. Partial discharge (PD) is responsible for this disadvantage condition. The objective of this paper is present partial discharge (PD) analysis using statistical methods for predictive maintenance of generator in geothermal power plant. TGA-B IRIS was used for online PD measurement. The measurement data is analysed statistically to forecast the time of critical condition of stator winding of generator using vector autoregressive (VAR) method. The analysis result became the basis of predictive maintenance.</abstract><pub>IEEE</pub><doi>10.1109/CMD.2012.6416325</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467310190 |
ispartof | 2012 IEEE International Conference on Condition Monitoring and Diagnosis, 2012, p.1003-1006 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6416325 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Correlation Generators goethermal Insulation Iris partial discharge Partial discharges predictive maintenance Reactive power Stator windings vector autoregressive |
title | Statistical analysis of partial discharge characteristics for predictive maintenance of generator of geothermal power plant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20analysis%20of%20partial%20discharge%20characteristics%20for%20predictive%20maintenance%20of%20generator%20of%20geothermal%20power%20plant&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Condition%20Monitoring%20and%20Diagnosis&rft.au=Darwanto,%20D.&rft.date=2012-09&rft.spage=1003&rft.epage=1006&rft.pages=1003-1006&rft.isbn=1467310190&rft.isbn_list=9781467310192&rft_id=info:doi/10.1109/CMD.2012.6416325&rft_dat=%3Cieee_6IE%3E6416325%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467310185&rft.eisbn_list=1467310204&rft.eisbn_list=1467310182&rft.eisbn_list=9781467310208&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6416325&rfr_iscdi=true |