Thermal signatures for pattern recognition approach applied to induction motor diagnosis

Electric drives condition monitoring is essential to optimize maintenance operations and to increase reliability levels. This paper presents a diagnosis method for electrical faults detection. Firstly some signatures representing induction motor thermal heating are developed. Indeed a motor provides...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ondel, O., Boutleux, E., Clerc, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 717
container_issue
container_start_page 714
container_title
container_volume
creator Ondel, O.
Boutleux, E.
Clerc, G.
description Electric drives condition monitoring is essential to optimize maintenance operations and to increase reliability levels. This paper presents a diagnosis method for electrical faults detection. Firstly some signatures representing induction motor thermal heating are developed. Indeed a motor provides normal losses (mechanical, electrical, magnetic, etc.) as well as additional losses due to some faults. Losses involve an operating temperature increase, which can be particularly damaging for insulation. Eventually this can bring partial or total destruction of this insulation and create a short circuit between turns. From a thermal modelling of induction motor, with a simplified model, the heating can be computed and used as faults signatures. Secondly in order to realize automatic diagnosis, theses signatures are associated with a pattern recognition approach. The aim is to detect faults appearing on the system and to define their severity level by reference to an initial data base. In order to prove reliability and efficiency, experimental results will be presented using an induction motor 5.5kW.
doi_str_mv 10.1109/CMD.2012.6416246
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6416246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6416246</ieee_id><sourcerecordid>6416246</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-382c2cb5083c6df8101940af422b71a334a1607a3845dc21cac366dd0700dd873</originalsourceid><addsrcrecordid>eNo1UM1KAzEYjIig1t4FL3mBXb_8NMkeZdUqVLxU8Fa-JtltpN0sSXrw7W21nmaGYYZhCLllUDMGzX379lhzYLxWkiku1RmZNtowqbRgwMzsnFz_iwYuyTTnLwA4RJVuxBX5XG582uGW5tAPWPbJZ9rFREcsxaeBJm9jP4QS4kBxHFNEuzmSbfCOlkjD4Pb2193Fcsi5gP0Qc8g35KLDbfbTE07Ix_PTsn2pFu_z1_ZhUQUuWamE4Zbb9QyMsMp15jhTAnaS87VmKIREpkCjMHLmLGcWrVDKOdAAzhktJuTurzd471djCjtM36vTGeIHjnFTRQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Thermal signatures for pattern recognition approach applied to induction motor diagnosis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ondel, O. ; Boutleux, E. ; Clerc, G.</creator><creatorcontrib>Ondel, O. ; Boutleux, E. ; Clerc, G.</creatorcontrib><description>Electric drives condition monitoring is essential to optimize maintenance operations and to increase reliability levels. This paper presents a diagnosis method for electrical faults detection. Firstly some signatures representing induction motor thermal heating are developed. Indeed a motor provides normal losses (mechanical, electrical, magnetic, etc.) as well as additional losses due to some faults. Losses involve an operating temperature increase, which can be particularly damaging for insulation. Eventually this can bring partial or total destruction of this insulation and create a short circuit between turns. From a thermal modelling of induction motor, with a simplified model, the heating can be computed and used as faults signatures. Secondly in order to realize automatic diagnosis, theses signatures are associated with a pattern recognition approach. The aim is to detect faults appearing on the system and to define their severity level by reference to an initial data base. In order to prove reliability and efficiency, experimental results will be presented using an induction motor 5.5kW.</description><identifier>ISBN: 1467310190</identifier><identifier>ISBN: 9781467310192</identifier><identifier>EISBN: 9781467310185</identifier><identifier>EISBN: 1467310204</identifier><identifier>EISBN: 1467310182</identifier><identifier>EISBN: 9781467310208</identifier><identifier>DOI: 10.1109/CMD.2012.6416246</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit faults ; diagnosis ; induction motor ; Induction motors ; Insulation ; monitoring ; Pattern recognition ; Rotors ; Stators ; thermal signatures ; Training</subject><ispartof>2012 IEEE International Conference on Condition Monitoring and Diagnosis, 2012, p.714-717</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6416246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6416246$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ondel, O.</creatorcontrib><creatorcontrib>Boutleux, E.</creatorcontrib><creatorcontrib>Clerc, G.</creatorcontrib><title>Thermal signatures for pattern recognition approach applied to induction motor diagnosis</title><title>2012 IEEE International Conference on Condition Monitoring and Diagnosis</title><addtitle>CMD</addtitle><description>Electric drives condition monitoring is essential to optimize maintenance operations and to increase reliability levels. This paper presents a diagnosis method for electrical faults detection. Firstly some signatures representing induction motor thermal heating are developed. Indeed a motor provides normal losses (mechanical, electrical, magnetic, etc.) as well as additional losses due to some faults. Losses involve an operating temperature increase, which can be particularly damaging for insulation. Eventually this can bring partial or total destruction of this insulation and create a short circuit between turns. From a thermal modelling of induction motor, with a simplified model, the heating can be computed and used as faults signatures. Secondly in order to realize automatic diagnosis, theses signatures are associated with a pattern recognition approach. The aim is to detect faults appearing on the system and to define their severity level by reference to an initial data base. In order to prove reliability and efficiency, experimental results will be presented using an induction motor 5.5kW.</description><subject>Circuit faults</subject><subject>diagnosis</subject><subject>induction motor</subject><subject>Induction motors</subject><subject>Insulation</subject><subject>monitoring</subject><subject>Pattern recognition</subject><subject>Rotors</subject><subject>Stators</subject><subject>thermal signatures</subject><subject>Training</subject><isbn>1467310190</isbn><isbn>9781467310192</isbn><isbn>9781467310185</isbn><isbn>1467310204</isbn><isbn>1467310182</isbn><isbn>9781467310208</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UM1KAzEYjIig1t4FL3mBXb_8NMkeZdUqVLxU8Fa-JtltpN0sSXrw7W21nmaGYYZhCLllUDMGzX379lhzYLxWkiku1RmZNtowqbRgwMzsnFz_iwYuyTTnLwA4RJVuxBX5XG582uGW5tAPWPbJZ9rFREcsxaeBJm9jP4QS4kBxHFNEuzmSbfCOlkjD4Pb2193Fcsi5gP0Qc8g35KLDbfbTE07Ix_PTsn2pFu_z1_ZhUQUuWamE4Zbb9QyMsMp15jhTAnaS87VmKIREpkCjMHLmLGcWrVDKOdAAzhktJuTurzd471djCjtM36vTGeIHjnFTRQ</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Ondel, O.</creator><creator>Boutleux, E.</creator><creator>Clerc, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Thermal signatures for pattern recognition approach applied to induction motor diagnosis</title><author>Ondel, O. ; Boutleux, E. ; Clerc, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-382c2cb5083c6df8101940af422b71a334a1607a3845dc21cac366dd0700dd873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Circuit faults</topic><topic>diagnosis</topic><topic>induction motor</topic><topic>Induction motors</topic><topic>Insulation</topic><topic>monitoring</topic><topic>Pattern recognition</topic><topic>Rotors</topic><topic>Stators</topic><topic>thermal signatures</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ondel, O.</creatorcontrib><creatorcontrib>Boutleux, E.</creatorcontrib><creatorcontrib>Clerc, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ondel, O.</au><au>Boutleux, E.</au><au>Clerc, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermal signatures for pattern recognition approach applied to induction motor diagnosis</atitle><btitle>2012 IEEE International Conference on Condition Monitoring and Diagnosis</btitle><stitle>CMD</stitle><date>2012-09</date><risdate>2012</risdate><spage>714</spage><epage>717</epage><pages>714-717</pages><isbn>1467310190</isbn><isbn>9781467310192</isbn><eisbn>9781467310185</eisbn><eisbn>1467310204</eisbn><eisbn>1467310182</eisbn><eisbn>9781467310208</eisbn><abstract>Electric drives condition monitoring is essential to optimize maintenance operations and to increase reliability levels. This paper presents a diagnosis method for electrical faults detection. Firstly some signatures representing induction motor thermal heating are developed. Indeed a motor provides normal losses (mechanical, electrical, magnetic, etc.) as well as additional losses due to some faults. Losses involve an operating temperature increase, which can be particularly damaging for insulation. Eventually this can bring partial or total destruction of this insulation and create a short circuit between turns. From a thermal modelling of induction motor, with a simplified model, the heating can be computed and used as faults signatures. Secondly in order to realize automatic diagnosis, theses signatures are associated with a pattern recognition approach. The aim is to detect faults appearing on the system and to define their severity level by reference to an initial data base. In order to prove reliability and efficiency, experimental results will be presented using an induction motor 5.5kW.</abstract><pub>IEEE</pub><doi>10.1109/CMD.2012.6416246</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467310190
ispartof 2012 IEEE International Conference on Condition Monitoring and Diagnosis, 2012, p.714-717
issn
language eng
recordid cdi_ieee_primary_6416246
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Circuit faults
diagnosis
induction motor
Induction motors
Insulation
monitoring
Pattern recognition
Rotors
Stators
thermal signatures
Training
title Thermal signatures for pattern recognition approach applied to induction motor diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermal%20signatures%20for%20pattern%20recognition%20approach%20applied%20to%20induction%20motor%20diagnosis&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Condition%20Monitoring%20and%20Diagnosis&rft.au=Ondel,%20O.&rft.date=2012-09&rft.spage=714&rft.epage=717&rft.pages=714-717&rft.isbn=1467310190&rft.isbn_list=9781467310192&rft_id=info:doi/10.1109/CMD.2012.6416246&rft_dat=%3Cieee_6IE%3E6416246%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467310185&rft.eisbn_list=1467310204&rft.eisbn_list=1467310182&rft.eisbn_list=9781467310208&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6416246&rfr_iscdi=true