Video De-Fencing

This paper describes and provides an initial solution to a novel video editing task, i.e., video de-fencing. It targets automatic restoration of the video clips that are corrupted by fence-like occlusions during capture. Our key observation lies in the visual parallax between fences and background s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2014-07, Vol.24 (7), p.1111-1121
Hauptverfasser: Mu, Yadong, Liu, Wei, Yan, Shuicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1121
container_issue 7
container_start_page 1111
container_title IEEE transactions on circuits and systems for video technology
container_volume 24
creator Mu, Yadong
Liu, Wei
Yan, Shuicheng
description This paper describes and provides an initial solution to a novel video editing task, i.e., video de-fencing. It targets automatic restoration of the video clips that are corrupted by fence-like occlusions during capture. Our key observation lies in the visual parallax between fences and background scenes, which is caused by the fact that the former are typically closer to the camera. Unlike in traditional image inpainting, fence-occluded pixels in the videos tend to appear later in the temporal dimension and are therefore recoverable via optimized pixel selection from relevant frames. To eventually produce fence-free videos, major challenges include cross-frame subpixel image alignment under diverse scene depth, and correct pixel selection that is robust to dominating fence pixels. Several novel tools are developed in this paper, including soft fence detection, weighted truncated optical flow method, and robust temporal median filter. The proposed algorithm is validated on several real-world video clips with fences.
doi_str_mv 10.1109/TCSVT.2013.2241351
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6415261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6415261</ieee_id><sourcerecordid>1559699072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-36fec4d24c1b4257b0d7b694bcd49ecdff405106138791e4bb0ea811bfa8f803</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUgMcOCxMKScOfYiT2ilgJSJQairlbsnFGqNilxM_DvcUnFwHQ3PO-HXsZuEFJE0I_l7GNVphwwSzkXmEk8YROUUiWcgzyNP0hMFEd5zi5CWAOgUKKYsOtVU1N3N6dkQa1r2s9LduarTaCr452ycvFczl6T5fvL2-xpmbiMq32S5Z6cqLlwaAWXhYW6sLkW1tVCk6u9FzERcsxUoZGEtUCVQrS-Ul5BNmUPo-2u774GCnuzbYKjzaZqqRuCid11rjUUPKL3_9B1N_RtLBcpERO0LmSk-Ei5vguhJ292fbOt-m-DYA4bmd-NzGEjc9woim5HUUNEf4JcoOTR9wcq0V-D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546139975</pqid></control><display><type>article</type><title>Video De-Fencing</title><source>IEEE Electronic Library (IEL)</source><creator>Mu, Yadong ; Liu, Wei ; Yan, Shuicheng</creator><creatorcontrib>Mu, Yadong ; Liu, Wei ; Yan, Shuicheng</creatorcontrib><description>This paper describes and provides an initial solution to a novel video editing task, i.e., video de-fencing. It targets automatic restoration of the video clips that are corrupted by fence-like occlusions during capture. Our key observation lies in the visual parallax between fences and background scenes, which is caused by the fact that the former are typically closer to the camera. Unlike in traditional image inpainting, fence-occluded pixels in the videos tend to appear later in the temporal dimension and are therefore recoverable via optimized pixel selection from relevant frames. To eventually produce fence-free videos, major challenges include cross-frame subpixel image alignment under diverse scene depth, and correct pixel selection that is robust to dominating fence pixels. Several novel tools are developed in this paper, including soft fence detection, weighted truncated optical flow method, and robust temporal median filter. The proposed algorithm is validated on several real-world video clips with fences.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2013.2241351</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Clips ; Estimation ; Fences ; Image restoration ; Optical imaging ; Parallax ; Pixels ; Rain ; Robustness ; sub-pixel alignment ; Tasks ; Temporal logic ; Video de-fencing ; Visual ; Visualization ; weighted truncated optical flow</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2014-07, Vol.24 (7), p.1111-1121</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-36fec4d24c1b4257b0d7b694bcd49ecdff405106138791e4bb0ea811bfa8f803</citedby><cites>FETCH-LOGICAL-c328t-36fec4d24c1b4257b0d7b694bcd49ecdff405106138791e4bb0ea811bfa8f803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6415261$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6415261$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mu, Yadong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Yan, Shuicheng</creatorcontrib><title>Video De-Fencing</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>This paper describes and provides an initial solution to a novel video editing task, i.e., video de-fencing. It targets automatic restoration of the video clips that are corrupted by fence-like occlusions during capture. Our key observation lies in the visual parallax between fences and background scenes, which is caused by the fact that the former are typically closer to the camera. Unlike in traditional image inpainting, fence-occluded pixels in the videos tend to appear later in the temporal dimension and are therefore recoverable via optimized pixel selection from relevant frames. To eventually produce fence-free videos, major challenges include cross-frame subpixel image alignment under diverse scene depth, and correct pixel selection that is robust to dominating fence pixels. Several novel tools are developed in this paper, including soft fence detection, weighted truncated optical flow method, and robust temporal median filter. The proposed algorithm is validated on several real-world video clips with fences.</description><subject>Cameras</subject><subject>Clips</subject><subject>Estimation</subject><subject>Fences</subject><subject>Image restoration</subject><subject>Optical imaging</subject><subject>Parallax</subject><subject>Pixels</subject><subject>Rain</subject><subject>Robustness</subject><subject>sub-pixel alignment</subject><subject>Tasks</subject><subject>Temporal logic</subject><subject>Video de-fencing</subject><subject>Visual</subject><subject>Visualization</subject><subject>weighted truncated optical flow</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqUgMcOCxMKScOfYiT2ilgJSJQairlbsnFGqNilxM_DvcUnFwHQ3PO-HXsZuEFJE0I_l7GNVphwwSzkXmEk8YROUUiWcgzyNP0hMFEd5zi5CWAOgUKKYsOtVU1N3N6dkQa1r2s9LduarTaCr452ycvFczl6T5fvL2-xpmbiMq32S5Z6cqLlwaAWXhYW6sLkW1tVCk6u9FzERcsxUoZGEtUCVQrS-Ul5BNmUPo-2u774GCnuzbYKjzaZqqRuCid11rjUUPKL3_9B1N_RtLBcpERO0LmSk-Ei5vguhJ292fbOt-m-DYA4bmd-NzGEjc9woim5HUUNEf4JcoOTR9wcq0V-D</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Mu, Yadong</creator><creator>Liu, Wei</creator><creator>Yan, Shuicheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140701</creationdate><title>Video De-Fencing</title><author>Mu, Yadong ; Liu, Wei ; Yan, Shuicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-36fec4d24c1b4257b0d7b694bcd49ecdff405106138791e4bb0ea811bfa8f803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cameras</topic><topic>Clips</topic><topic>Estimation</topic><topic>Fences</topic><topic>Image restoration</topic><topic>Optical imaging</topic><topic>Parallax</topic><topic>Pixels</topic><topic>Rain</topic><topic>Robustness</topic><topic>sub-pixel alignment</topic><topic>Tasks</topic><topic>Temporal logic</topic><topic>Video de-fencing</topic><topic>Visual</topic><topic>Visualization</topic><topic>weighted truncated optical flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Yadong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Yan, Shuicheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mu, Yadong</au><au>Liu, Wei</au><au>Yan, Shuicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Video De-Fencing</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>24</volume><issue>7</issue><spage>1111</spage><epage>1121</epage><pages>1111-1121</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>This paper describes and provides an initial solution to a novel video editing task, i.e., video de-fencing. It targets automatic restoration of the video clips that are corrupted by fence-like occlusions during capture. Our key observation lies in the visual parallax between fences and background scenes, which is caused by the fact that the former are typically closer to the camera. Unlike in traditional image inpainting, fence-occluded pixels in the videos tend to appear later in the temporal dimension and are therefore recoverable via optimized pixel selection from relevant frames. To eventually produce fence-free videos, major challenges include cross-frame subpixel image alignment under diverse scene depth, and correct pixel selection that is robust to dominating fence pixels. Several novel tools are developed in this paper, including soft fence detection, weighted truncated optical flow method, and robust temporal median filter. The proposed algorithm is validated on several real-world video clips with fences.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2013.2241351</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2014-07, Vol.24 (7), p.1111-1121
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_6415261
source IEEE Electronic Library (IEL)
subjects Cameras
Clips
Estimation
Fences
Image restoration
Optical imaging
Parallax
Pixels
Rain
Robustness
sub-pixel alignment
Tasks
Temporal logic
Video de-fencing
Visual
Visualization
weighted truncated optical flow
title Video De-Fencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Video%20De-Fencing&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Mu,%20Yadong&rft.date=2014-07-01&rft.volume=24&rft.issue=7&rft.spage=1111&rft.epage=1121&rft.pages=1111-1121&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2013.2241351&rft_dat=%3Cproquest_RIE%3E1559699072%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546139975&rft_id=info:pmid/&rft_ieee_id=6415261&rfr_iscdi=true