Efficient Episode Mining of Dynamic Event Streams

Discovering frequent episodes over event sequences is an important data mining problem. Existing methods typically require multiple passes over the data, rendering them unsuitable for streaming contexts. We present the first streaming algorithm for mining frequent episodes over a window of recent ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Patnaik, D., Laxman, S., Chandramouli, B., Ramakrishnan, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue
container_start_page 605
container_title
container_volume
creator Patnaik, D.
Laxman, S.
Chandramouli, B.
Ramakrishnan, N.
description Discovering frequent episodes over event sequences is an important data mining problem. Existing methods typically require multiple passes over the data, rendering them unsuitable for streaming contexts. We present the first streaming algorithm for mining frequent episodes over a window of recent events in the stream. We derive approximation guarantees for our algorithm in terms of: (i) the separation of frequent episodes from infrequent ones, and (ii) the rate of change of stream characteristics. Our parameterization of the problem provides a new sweet spot in the tradeoff between making distributional assumptions over the stream and algorithmic efficiencies of mining. We illustrate how this yields significant benefits when mining practical streams from neuroscience and telecommunications logs.
doi_str_mv 10.1109/ICDM.2012.84
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6413866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6413866</ieee_id><sourcerecordid>6413866</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-5767fdeb15d883e422530c8cd0f84b46db8d464e004c9e1b7eb3690468df47ed3</originalsourceid><addsrcrecordid>eNotjj1PwzAUAM2XRFq6sbHkDyQ828_P9ojaAJVaMQBzlcTPyIikVRIh9d9TBNMNJ51OiFsJpZTg79fL1bZUIFXp8EwsvHVgyRv0YOy5yJS2WDh0dCFmEslqJPT2UmTSGCjQOroWs3H8BNBEGjIhqxhTm7if8uqQxn3gfJv61H_k-5ivjn3dpTavvn_96zRw3Y034irWXyMv_jkX74_V2_K52Lw8rZcPmyIpqafCWLIxcCNNcE4zKmU0tK4NEB02SKFx4TTHANh6lo3lRpMHJBciWg56Lu7-uomZd4chdfVw3BFK7U7rP7tZRmM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient Episode Mining of Dynamic Event Streams</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Patnaik, D. ; Laxman, S. ; Chandramouli, B. ; Ramakrishnan, N.</creator><creatorcontrib>Patnaik, D. ; Laxman, S. ; Chandramouli, B. ; Ramakrishnan, N.</creatorcontrib><description>Discovering frequent episodes over event sequences is an important data mining problem. Existing methods typically require multiple passes over the data, rendering them unsuitable for streaming contexts. We present the first streaming algorithm for mining frequent episodes over a window of recent events in the stream. We derive approximation guarantees for our algorithm in terms of: (i) the separation of frequent episodes from infrequent ones, and (ii) the rate of change of stream characteristics. Our parameterization of the problem provides a new sweet spot in the tradeoff between making distributional assumptions over the stream and algorithmic efficiencies of mining. We illustrate how this yields significant benefits when mining practical streams from neuroscience and telecommunications logs.</description><identifier>ISSN: 1550-4786</identifier><identifier>ISBN: 1467346497</identifier><identifier>ISBN: 9781467346498</identifier><identifier>EISSN: 2374-8486</identifier><identifier>EISBN: 9780769549057</identifier><identifier>EISBN: 0769549055</identifier><identifier>DOI: 10.1109/ICDM.2012.84</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Approximation algorithms ; Approximation methods ; Data mining ; Data Streams ; Electronic mail ; Event Sequences ; Frequency shift keying ; Frequent Episodes ; Pattern Discovery ; Photonic band gap ; Streaming Algorithms</subject><ispartof>2012 IEEE 12th International Conference on Data Mining, 2012, p.605-614</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6413866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6413866$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Patnaik, D.</creatorcontrib><creatorcontrib>Laxman, S.</creatorcontrib><creatorcontrib>Chandramouli, B.</creatorcontrib><creatorcontrib>Ramakrishnan, N.</creatorcontrib><title>Efficient Episode Mining of Dynamic Event Streams</title><title>2012 IEEE 12th International Conference on Data Mining</title><addtitle>icdm</addtitle><description>Discovering frequent episodes over event sequences is an important data mining problem. Existing methods typically require multiple passes over the data, rendering them unsuitable for streaming contexts. We present the first streaming algorithm for mining frequent episodes over a window of recent events in the stream. We derive approximation guarantees for our algorithm in terms of: (i) the separation of frequent episodes from infrequent ones, and (ii) the rate of change of stream characteristics. Our parameterization of the problem provides a new sweet spot in the tradeoff between making distributional assumptions over the stream and algorithmic efficiencies of mining. We illustrate how this yields significant benefits when mining practical streams from neuroscience and telecommunications logs.</description><subject>Algorithm design and analysis</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Data mining</subject><subject>Data Streams</subject><subject>Electronic mail</subject><subject>Event Sequences</subject><subject>Frequency shift keying</subject><subject>Frequent Episodes</subject><subject>Pattern Discovery</subject><subject>Photonic band gap</subject><subject>Streaming Algorithms</subject><issn>1550-4786</issn><issn>2374-8486</issn><isbn>1467346497</isbn><isbn>9781467346498</isbn><isbn>9780769549057</isbn><isbn>0769549055</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjj1PwzAUAM2XRFq6sbHkDyQ828_P9ojaAJVaMQBzlcTPyIikVRIh9d9TBNMNJ51OiFsJpZTg79fL1bZUIFXp8EwsvHVgyRv0YOy5yJS2WDh0dCFmEslqJPT2UmTSGCjQOroWs3H8BNBEGjIhqxhTm7if8uqQxn3gfJv61H_k-5ivjn3dpTavvn_96zRw3Y034irWXyMv_jkX74_V2_K52Lw8rZcPmyIpqafCWLIxcCNNcE4zKmU0tK4NEB02SKFx4TTHANh6lo3lRpMHJBciWg56Lu7-uomZd4chdfVw3BFK7U7rP7tZRmM</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Patnaik, D.</creator><creator>Laxman, S.</creator><creator>Chandramouli, B.</creator><creator>Ramakrishnan, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Efficient Episode Mining of Dynamic Event Streams</title><author>Patnaik, D. ; Laxman, S. ; Chandramouli, B. ; Ramakrishnan, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-5767fdeb15d883e422530c8cd0f84b46db8d464e004c9e1b7eb3690468df47ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Data mining</topic><topic>Data Streams</topic><topic>Electronic mail</topic><topic>Event Sequences</topic><topic>Frequency shift keying</topic><topic>Frequent Episodes</topic><topic>Pattern Discovery</topic><topic>Photonic band gap</topic><topic>Streaming Algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Patnaik, D.</creatorcontrib><creatorcontrib>Laxman, S.</creatorcontrib><creatorcontrib>Chandramouli, B.</creatorcontrib><creatorcontrib>Ramakrishnan, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patnaik, D.</au><au>Laxman, S.</au><au>Chandramouli, B.</au><au>Ramakrishnan, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient Episode Mining of Dynamic Event Streams</atitle><btitle>2012 IEEE 12th International Conference on Data Mining</btitle><stitle>icdm</stitle><date>2012-12</date><risdate>2012</risdate><spage>605</spage><epage>614</epage><pages>605-614</pages><issn>1550-4786</issn><eissn>2374-8486</eissn><isbn>1467346497</isbn><isbn>9781467346498</isbn><eisbn>9780769549057</eisbn><eisbn>0769549055</eisbn><coden>IEEPAD</coden><abstract>Discovering frequent episodes over event sequences is an important data mining problem. Existing methods typically require multiple passes over the data, rendering them unsuitable for streaming contexts. We present the first streaming algorithm for mining frequent episodes over a window of recent events in the stream. We derive approximation guarantees for our algorithm in terms of: (i) the separation of frequent episodes from infrequent ones, and (ii) the rate of change of stream characteristics. Our parameterization of the problem provides a new sweet spot in the tradeoff between making distributional assumptions over the stream and algorithmic efficiencies of mining. We illustrate how this yields significant benefits when mining practical streams from neuroscience and telecommunications logs.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2012.84</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-4786
ispartof 2012 IEEE 12th International Conference on Data Mining, 2012, p.605-614
issn 1550-4786
2374-8486
language eng
recordid cdi_ieee_primary_6413866
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Approximation algorithms
Approximation methods
Data mining
Data Streams
Electronic mail
Event Sequences
Frequency shift keying
Frequent Episodes
Pattern Discovery
Photonic band gap
Streaming Algorithms
title Efficient Episode Mining of Dynamic Event Streams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20Episode%20Mining%20of%20Dynamic%20Event%20Streams&rft.btitle=2012%20IEEE%2012th%20International%20Conference%20on%20Data%20Mining&rft.au=Patnaik,%20D.&rft.date=2012-12&rft.spage=605&rft.epage=614&rft.pages=605-614&rft.issn=1550-4786&rft.eissn=2374-8486&rft.isbn=1467346497&rft.isbn_list=9781467346498&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDM.2012.84&rft_dat=%3Cieee_6IE%3E6413866%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549057&rft.eisbn_list=0769549055&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6413866&rfr_iscdi=true