Efficient Episode Mining of Dynamic Event Streams
Discovering frequent episodes over event sequences is an important data mining problem. Existing methods typically require multiple passes over the data, rendering them unsuitable for streaming contexts. We present the first streaming algorithm for mining frequent episodes over a window of recent ev...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | |
container_start_page | 605 |
container_title | |
container_volume | |
creator | Patnaik, D. Laxman, S. Chandramouli, B. Ramakrishnan, N. |
description | Discovering frequent episodes over event sequences is an important data mining problem. Existing methods typically require multiple passes over the data, rendering them unsuitable for streaming contexts. We present the first streaming algorithm for mining frequent episodes over a window of recent events in the stream. We derive approximation guarantees for our algorithm in terms of: (i) the separation of frequent episodes from infrequent ones, and (ii) the rate of change of stream characteristics. Our parameterization of the problem provides a new sweet spot in the tradeoff between making distributional assumptions over the stream and algorithmic efficiencies of mining. We illustrate how this yields significant benefits when mining practical streams from neuroscience and telecommunications logs. |
doi_str_mv | 10.1109/ICDM.2012.84 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6413866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6413866</ieee_id><sourcerecordid>6413866</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-5767fdeb15d883e422530c8cd0f84b46db8d464e004c9e1b7eb3690468df47ed3</originalsourceid><addsrcrecordid>eNotjj1PwzAUAM2XRFq6sbHkDyQ828_P9ojaAJVaMQBzlcTPyIikVRIh9d9TBNMNJ51OiFsJpZTg79fL1bZUIFXp8EwsvHVgyRv0YOy5yJS2WDh0dCFmEslqJPT2UmTSGCjQOroWs3H8BNBEGjIhqxhTm7if8uqQxn3gfJv61H_k-5ivjn3dpTavvn_96zRw3Y034irWXyMv_jkX74_V2_K52Lw8rZcPmyIpqafCWLIxcCNNcE4zKmU0tK4NEB02SKFx4TTHANh6lo3lRpMHJBciWg56Lu7-uomZd4chdfVw3BFK7U7rP7tZRmM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient Episode Mining of Dynamic Event Streams</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Patnaik, D. ; Laxman, S. ; Chandramouli, B. ; Ramakrishnan, N.</creator><creatorcontrib>Patnaik, D. ; Laxman, S. ; Chandramouli, B. ; Ramakrishnan, N.</creatorcontrib><description>Discovering frequent episodes over event sequences is an important data mining problem. Existing methods typically require multiple passes over the data, rendering them unsuitable for streaming contexts. We present the first streaming algorithm for mining frequent episodes over a window of recent events in the stream. We derive approximation guarantees for our algorithm in terms of: (i) the separation of frequent episodes from infrequent ones, and (ii) the rate of change of stream characteristics. Our parameterization of the problem provides a new sweet spot in the tradeoff between making distributional assumptions over the stream and algorithmic efficiencies of mining. We illustrate how this yields significant benefits when mining practical streams from neuroscience and telecommunications logs.</description><identifier>ISSN: 1550-4786</identifier><identifier>ISBN: 1467346497</identifier><identifier>ISBN: 9781467346498</identifier><identifier>EISSN: 2374-8486</identifier><identifier>EISBN: 9780769549057</identifier><identifier>EISBN: 0769549055</identifier><identifier>DOI: 10.1109/ICDM.2012.84</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Approximation algorithms ; Approximation methods ; Data mining ; Data Streams ; Electronic mail ; Event Sequences ; Frequency shift keying ; Frequent Episodes ; Pattern Discovery ; Photonic band gap ; Streaming Algorithms</subject><ispartof>2012 IEEE 12th International Conference on Data Mining, 2012, p.605-614</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6413866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6413866$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Patnaik, D.</creatorcontrib><creatorcontrib>Laxman, S.</creatorcontrib><creatorcontrib>Chandramouli, B.</creatorcontrib><creatorcontrib>Ramakrishnan, N.</creatorcontrib><title>Efficient Episode Mining of Dynamic Event Streams</title><title>2012 IEEE 12th International Conference on Data Mining</title><addtitle>icdm</addtitle><description>Discovering frequent episodes over event sequences is an important data mining problem. Existing methods typically require multiple passes over the data, rendering them unsuitable for streaming contexts. We present the first streaming algorithm for mining frequent episodes over a window of recent events in the stream. We derive approximation guarantees for our algorithm in terms of: (i) the separation of frequent episodes from infrequent ones, and (ii) the rate of change of stream characteristics. Our parameterization of the problem provides a new sweet spot in the tradeoff between making distributional assumptions over the stream and algorithmic efficiencies of mining. We illustrate how this yields significant benefits when mining practical streams from neuroscience and telecommunications logs.</description><subject>Algorithm design and analysis</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Data mining</subject><subject>Data Streams</subject><subject>Electronic mail</subject><subject>Event Sequences</subject><subject>Frequency shift keying</subject><subject>Frequent Episodes</subject><subject>Pattern Discovery</subject><subject>Photonic band gap</subject><subject>Streaming Algorithms</subject><issn>1550-4786</issn><issn>2374-8486</issn><isbn>1467346497</isbn><isbn>9781467346498</isbn><isbn>9780769549057</isbn><isbn>0769549055</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjj1PwzAUAM2XRFq6sbHkDyQ828_P9ojaAJVaMQBzlcTPyIikVRIh9d9TBNMNJ51OiFsJpZTg79fL1bZUIFXp8EwsvHVgyRv0YOy5yJS2WDh0dCFmEslqJPT2UmTSGCjQOroWs3H8BNBEGjIhqxhTm7if8uqQxn3gfJv61H_k-5ivjn3dpTavvn_96zRw3Y034irWXyMv_jkX74_V2_K52Lw8rZcPmyIpqafCWLIxcCNNcE4zKmU0tK4NEB02SKFx4TTHANh6lo3lRpMHJBciWg56Lu7-uomZd4chdfVw3BFK7U7rP7tZRmM</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Patnaik, D.</creator><creator>Laxman, S.</creator><creator>Chandramouli, B.</creator><creator>Ramakrishnan, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Efficient Episode Mining of Dynamic Event Streams</title><author>Patnaik, D. ; Laxman, S. ; Chandramouli, B. ; Ramakrishnan, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-5767fdeb15d883e422530c8cd0f84b46db8d464e004c9e1b7eb3690468df47ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Data mining</topic><topic>Data Streams</topic><topic>Electronic mail</topic><topic>Event Sequences</topic><topic>Frequency shift keying</topic><topic>Frequent Episodes</topic><topic>Pattern Discovery</topic><topic>Photonic band gap</topic><topic>Streaming Algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Patnaik, D.</creatorcontrib><creatorcontrib>Laxman, S.</creatorcontrib><creatorcontrib>Chandramouli, B.</creatorcontrib><creatorcontrib>Ramakrishnan, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patnaik, D.</au><au>Laxman, S.</au><au>Chandramouli, B.</au><au>Ramakrishnan, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient Episode Mining of Dynamic Event Streams</atitle><btitle>2012 IEEE 12th International Conference on Data Mining</btitle><stitle>icdm</stitle><date>2012-12</date><risdate>2012</risdate><spage>605</spage><epage>614</epage><pages>605-614</pages><issn>1550-4786</issn><eissn>2374-8486</eissn><isbn>1467346497</isbn><isbn>9781467346498</isbn><eisbn>9780769549057</eisbn><eisbn>0769549055</eisbn><coden>IEEPAD</coden><abstract>Discovering frequent episodes over event sequences is an important data mining problem. Existing methods typically require multiple passes over the data, rendering them unsuitable for streaming contexts. We present the first streaming algorithm for mining frequent episodes over a window of recent events in the stream. We derive approximation guarantees for our algorithm in terms of: (i) the separation of frequent episodes from infrequent ones, and (ii) the rate of change of stream characteristics. Our parameterization of the problem provides a new sweet spot in the tradeoff between making distributional assumptions over the stream and algorithmic efficiencies of mining. We illustrate how this yields significant benefits when mining practical streams from neuroscience and telecommunications logs.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2012.84</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-4786 |
ispartof | 2012 IEEE 12th International Conference on Data Mining, 2012, p.605-614 |
issn | 1550-4786 2374-8486 |
language | eng |
recordid | cdi_ieee_primary_6413866 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Approximation algorithms Approximation methods Data mining Data Streams Electronic mail Event Sequences Frequency shift keying Frequent Episodes Pattern Discovery Photonic band gap Streaming Algorithms |
title | Efficient Episode Mining of Dynamic Event Streams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20Episode%20Mining%20of%20Dynamic%20Event%20Streams&rft.btitle=2012%20IEEE%2012th%20International%20Conference%20on%20Data%20Mining&rft.au=Patnaik,%20D.&rft.date=2012-12&rft.spage=605&rft.epage=614&rft.pages=605-614&rft.issn=1550-4786&rft.eissn=2374-8486&rft.isbn=1467346497&rft.isbn_list=9781467346498&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDM.2012.84&rft_dat=%3Cieee_6IE%3E6413866%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549057&rft.eisbn_list=0769549055&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6413866&rfr_iscdi=true |