Privacy Preservation in Streaming Data Collection
Big data management and analysis has become a hot topic in academic and industrial research. In fact, a large portion of big data in service today are initially streaming data. To preserve the privacy of such data that are collected from data streams, the most efficient way is to control the process...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 815 |
---|---|
container_issue | |
container_start_page | 810 |
container_title | |
container_volume | |
creator | Wee Siong Ng Huayu Wu Wei Wu Shili Xiang Kian-Lee Tan |
description | Big data management and analysis has become a hot topic in academic and industrial research. In fact, a large portion of big data in service today are initially streaming data. To preserve the privacy of such data that are collected from data streams, the most efficient way is to control the process of data collection according to corresponding privacy polices. In this paper, we design a framework to support data stream management with privacy-preserving capabilities. In particular, we focus on two premier principles of data privacy, limited disclosure and limited collection. With these two principles guaranteed, the archived data will not necessarily be checked for privacy protection, before analysis and other operations can be done. |
doi_str_mv | 10.1109/ICPADS.2012.132 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6413600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6413600</ieee_id><sourcerecordid>6413600</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-164643c8014311bcadc1091381ac227df370cfe82bb05eb1995cd573bdd028b83</originalsourceid><addsrcrecordid>eNotj8lqwzAUANUN6qY599CLf8Due3parGNw0jYQqCHtOUiyXFQcp8gmkL_veprDwMAwdodQIoJ5WNfNYrktOSAvkfgZmxtdgVZGCgNE5yzjykAhjZIXvw6F0iSkknjJMpQcCwNGX7ObcfwA4EASMoZNikfrT3mTwhjS0U7xMORxyLdTCnYfh_d8aSeb14e-D_5H3rKrzvZjmP9zxt4eV6_1c7F5eVrXi00RUcupQCWUIF8BCkJ03rb--wKpQus5121HGnwXKu4cyODQGOlbqcm1LfDKVTRj93_dGELYfaa4t-m0UwJJAdAXZh9H5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Privacy Preservation in Streaming Data Collection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wee Siong Ng ; Huayu Wu ; Wei Wu ; Shili Xiang ; Kian-Lee Tan</creator><creatorcontrib>Wee Siong Ng ; Huayu Wu ; Wei Wu ; Shili Xiang ; Kian-Lee Tan</creatorcontrib><description>Big data management and analysis has become a hot topic in academic and industrial research. In fact, a large portion of big data in service today are initially streaming data. To preserve the privacy of such data that are collected from data streams, the most efficient way is to control the process of data collection according to corresponding privacy polices. In this paper, we design a framework to support data stream management with privacy-preserving capabilities. In particular, we focus on two premier principles of data privacy, limited disclosure and limited collection. With these two principles guaranteed, the archived data will not necessarily be checked for privacy protection, before analysis and other operations can be done.</description><identifier>ISSN: 1521-9097</identifier><identifier>ISBN: 9781467345651</identifier><identifier>ISBN: 1467345652</identifier><identifier>EISSN: 2690-5965</identifier><identifier>EISBN: 9780769549033</identifier><identifier>EISBN: 0769549039</identifier><identifier>DOI: 10.1109/ICPADS.2012.132</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Access control ; Data privacy ; Information management ; limited collection ; limited disclosure ; policy enforcement ; Privacy ; privacy preservation ; streaming data ; Vegetation</subject><ispartof>2012 IEEE 18th International Conference on Parallel and Distributed Systems, 2012, p.810-815</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6413600$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6413600$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wee Siong Ng</creatorcontrib><creatorcontrib>Huayu Wu</creatorcontrib><creatorcontrib>Wei Wu</creatorcontrib><creatorcontrib>Shili Xiang</creatorcontrib><creatorcontrib>Kian-Lee Tan</creatorcontrib><title>Privacy Preservation in Streaming Data Collection</title><title>2012 IEEE 18th International Conference on Parallel and Distributed Systems</title><addtitle>PADSW</addtitle><description>Big data management and analysis has become a hot topic in academic and industrial research. In fact, a large portion of big data in service today are initially streaming data. To preserve the privacy of such data that are collected from data streams, the most efficient way is to control the process of data collection according to corresponding privacy polices. In this paper, we design a framework to support data stream management with privacy-preserving capabilities. In particular, we focus on two premier principles of data privacy, limited disclosure and limited collection. With these two principles guaranteed, the archived data will not necessarily be checked for privacy protection, before analysis and other operations can be done.</description><subject>Access control</subject><subject>Data privacy</subject><subject>Information management</subject><subject>limited collection</subject><subject>limited disclosure</subject><subject>policy enforcement</subject><subject>Privacy</subject><subject>privacy preservation</subject><subject>streaming data</subject><subject>Vegetation</subject><issn>1521-9097</issn><issn>2690-5965</issn><isbn>9781467345651</isbn><isbn>1467345652</isbn><isbn>9780769549033</isbn><isbn>0769549039</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8lqwzAUANUN6qY599CLf8Due3parGNw0jYQqCHtOUiyXFQcp8gmkL_veprDwMAwdodQIoJ5WNfNYrktOSAvkfgZmxtdgVZGCgNE5yzjykAhjZIXvw6F0iSkknjJMpQcCwNGX7ObcfwA4EASMoZNikfrT3mTwhjS0U7xMORxyLdTCnYfh_d8aSeb14e-D_5H3rKrzvZjmP9zxt4eV6_1c7F5eVrXi00RUcupQCWUIF8BCkJ03rb--wKpQus5121HGnwXKu4cyODQGOlbqcm1LfDKVTRj93_dGELYfaa4t-m0UwJJAdAXZh9H5Q</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Wee Siong Ng</creator><creator>Huayu Wu</creator><creator>Wei Wu</creator><creator>Shili Xiang</creator><creator>Kian-Lee Tan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Privacy Preservation in Streaming Data Collection</title><author>Wee Siong Ng ; Huayu Wu ; Wei Wu ; Shili Xiang ; Kian-Lee Tan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-164643c8014311bcadc1091381ac227df370cfe82bb05eb1995cd573bdd028b83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Access control</topic><topic>Data privacy</topic><topic>Information management</topic><topic>limited collection</topic><topic>limited disclosure</topic><topic>policy enforcement</topic><topic>Privacy</topic><topic>privacy preservation</topic><topic>streaming data</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Wee Siong Ng</creatorcontrib><creatorcontrib>Huayu Wu</creatorcontrib><creatorcontrib>Wei Wu</creatorcontrib><creatorcontrib>Shili Xiang</creatorcontrib><creatorcontrib>Kian-Lee Tan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wee Siong Ng</au><au>Huayu Wu</au><au>Wei Wu</au><au>Shili Xiang</au><au>Kian-Lee Tan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Privacy Preservation in Streaming Data Collection</atitle><btitle>2012 IEEE 18th International Conference on Parallel and Distributed Systems</btitle><stitle>PADSW</stitle><date>2012-12</date><risdate>2012</risdate><spage>810</spage><epage>815</epage><pages>810-815</pages><issn>1521-9097</issn><eissn>2690-5965</eissn><isbn>9781467345651</isbn><isbn>1467345652</isbn><eisbn>9780769549033</eisbn><eisbn>0769549039</eisbn><coden>IEEPAD</coden><abstract>Big data management and analysis has become a hot topic in academic and industrial research. In fact, a large portion of big data in service today are initially streaming data. To preserve the privacy of such data that are collected from data streams, the most efficient way is to control the process of data collection according to corresponding privacy polices. In this paper, we design a framework to support data stream management with privacy-preserving capabilities. In particular, we focus on two premier principles of data privacy, limited disclosure and limited collection. With these two principles guaranteed, the archived data will not necessarily be checked for privacy protection, before analysis and other operations can be done.</abstract><pub>IEEE</pub><doi>10.1109/ICPADS.2012.132</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-9097 |
ispartof | 2012 IEEE 18th International Conference on Parallel and Distributed Systems, 2012, p.810-815 |
issn | 1521-9097 2690-5965 |
language | eng |
recordid | cdi_ieee_primary_6413600 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Access control Data privacy Information management limited collection limited disclosure policy enforcement Privacy privacy preservation streaming data Vegetation |
title | Privacy Preservation in Streaming Data Collection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Privacy%20Preservation%20in%20Streaming%20Data%20Collection&rft.btitle=2012%20IEEE%2018th%20International%20Conference%20on%20Parallel%20and%20Distributed%20Systems&rft.au=Wee%20Siong%20Ng&rft.date=2012-12&rft.spage=810&rft.epage=815&rft.pages=810-815&rft.issn=1521-9097&rft.eissn=2690-5965&rft.isbn=9781467345651&rft.isbn_list=1467345652&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICPADS.2012.132&rft_dat=%3Cieee_6IE%3E6413600%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549033&rft.eisbn_list=0769549039&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6413600&rfr_iscdi=true |