Privacy Preservation in Streaming Data Collection

Big data management and analysis has become a hot topic in academic and industrial research. In fact, a large portion of big data in service today are initially streaming data. To preserve the privacy of such data that are collected from data streams, the most efficient way is to control the process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wee Siong Ng, Huayu Wu, Wei Wu, Shili Xiang, Kian-Lee Tan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 815
container_issue
container_start_page 810
container_title
container_volume
creator Wee Siong Ng
Huayu Wu
Wei Wu
Shili Xiang
Kian-Lee Tan
description Big data management and analysis has become a hot topic in academic and industrial research. In fact, a large portion of big data in service today are initially streaming data. To preserve the privacy of such data that are collected from data streams, the most efficient way is to control the process of data collection according to corresponding privacy polices. In this paper, we design a framework to support data stream management with privacy-preserving capabilities. In particular, we focus on two premier principles of data privacy, limited disclosure and limited collection. With these two principles guaranteed, the archived data will not necessarily be checked for privacy protection, before analysis and other operations can be done.
doi_str_mv 10.1109/ICPADS.2012.132
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6413600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6413600</ieee_id><sourcerecordid>6413600</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-164643c8014311bcadc1091381ac227df370cfe82bb05eb1995cd573bdd028b83</originalsourceid><addsrcrecordid>eNotj8lqwzAUANUN6qY599CLf8Due3parGNw0jYQqCHtOUiyXFQcp8gmkL_veprDwMAwdodQIoJ5WNfNYrktOSAvkfgZmxtdgVZGCgNE5yzjykAhjZIXvw6F0iSkknjJMpQcCwNGX7ObcfwA4EASMoZNikfrT3mTwhjS0U7xMORxyLdTCnYfh_d8aSeb14e-D_5H3rKrzvZjmP9zxt4eV6_1c7F5eVrXi00RUcupQCWUIF8BCkJ03rb--wKpQus5121HGnwXKu4cyODQGOlbqcm1LfDKVTRj93_dGELYfaa4t-m0UwJJAdAXZh9H5Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Privacy Preservation in Streaming Data Collection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wee Siong Ng ; Huayu Wu ; Wei Wu ; Shili Xiang ; Kian-Lee Tan</creator><creatorcontrib>Wee Siong Ng ; Huayu Wu ; Wei Wu ; Shili Xiang ; Kian-Lee Tan</creatorcontrib><description>Big data management and analysis has become a hot topic in academic and industrial research. In fact, a large portion of big data in service today are initially streaming data. To preserve the privacy of such data that are collected from data streams, the most efficient way is to control the process of data collection according to corresponding privacy polices. In this paper, we design a framework to support data stream management with privacy-preserving capabilities. In particular, we focus on two premier principles of data privacy, limited disclosure and limited collection. With these two principles guaranteed, the archived data will not necessarily be checked for privacy protection, before analysis and other operations can be done.</description><identifier>ISSN: 1521-9097</identifier><identifier>ISBN: 9781467345651</identifier><identifier>ISBN: 1467345652</identifier><identifier>EISSN: 2690-5965</identifier><identifier>EISBN: 9780769549033</identifier><identifier>EISBN: 0769549039</identifier><identifier>DOI: 10.1109/ICPADS.2012.132</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Access control ; Data privacy ; Information management ; limited collection ; limited disclosure ; policy enforcement ; Privacy ; privacy preservation ; streaming data ; Vegetation</subject><ispartof>2012 IEEE 18th International Conference on Parallel and Distributed Systems, 2012, p.810-815</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6413600$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6413600$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wee Siong Ng</creatorcontrib><creatorcontrib>Huayu Wu</creatorcontrib><creatorcontrib>Wei Wu</creatorcontrib><creatorcontrib>Shili Xiang</creatorcontrib><creatorcontrib>Kian-Lee Tan</creatorcontrib><title>Privacy Preservation in Streaming Data Collection</title><title>2012 IEEE 18th International Conference on Parallel and Distributed Systems</title><addtitle>PADSW</addtitle><description>Big data management and analysis has become a hot topic in academic and industrial research. In fact, a large portion of big data in service today are initially streaming data. To preserve the privacy of such data that are collected from data streams, the most efficient way is to control the process of data collection according to corresponding privacy polices. In this paper, we design a framework to support data stream management with privacy-preserving capabilities. In particular, we focus on two premier principles of data privacy, limited disclosure and limited collection. With these two principles guaranteed, the archived data will not necessarily be checked for privacy protection, before analysis and other operations can be done.</description><subject>Access control</subject><subject>Data privacy</subject><subject>Information management</subject><subject>limited collection</subject><subject>limited disclosure</subject><subject>policy enforcement</subject><subject>Privacy</subject><subject>privacy preservation</subject><subject>streaming data</subject><subject>Vegetation</subject><issn>1521-9097</issn><issn>2690-5965</issn><isbn>9781467345651</isbn><isbn>1467345652</isbn><isbn>9780769549033</isbn><isbn>0769549039</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8lqwzAUANUN6qY599CLf8Due3parGNw0jYQqCHtOUiyXFQcp8gmkL_veprDwMAwdodQIoJ5WNfNYrktOSAvkfgZmxtdgVZGCgNE5yzjykAhjZIXvw6F0iSkknjJMpQcCwNGX7ObcfwA4EASMoZNikfrT3mTwhjS0U7xMORxyLdTCnYfh_d8aSeb14e-D_5H3rKrzvZjmP9zxt4eV6_1c7F5eVrXi00RUcupQCWUIF8BCkJ03rb--wKpQus5121HGnwXKu4cyODQGOlbqcm1LfDKVTRj93_dGELYfaa4t-m0UwJJAdAXZh9H5Q</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Wee Siong Ng</creator><creator>Huayu Wu</creator><creator>Wei Wu</creator><creator>Shili Xiang</creator><creator>Kian-Lee Tan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Privacy Preservation in Streaming Data Collection</title><author>Wee Siong Ng ; Huayu Wu ; Wei Wu ; Shili Xiang ; Kian-Lee Tan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-164643c8014311bcadc1091381ac227df370cfe82bb05eb1995cd573bdd028b83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Access control</topic><topic>Data privacy</topic><topic>Information management</topic><topic>limited collection</topic><topic>limited disclosure</topic><topic>policy enforcement</topic><topic>Privacy</topic><topic>privacy preservation</topic><topic>streaming data</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Wee Siong Ng</creatorcontrib><creatorcontrib>Huayu Wu</creatorcontrib><creatorcontrib>Wei Wu</creatorcontrib><creatorcontrib>Shili Xiang</creatorcontrib><creatorcontrib>Kian-Lee Tan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wee Siong Ng</au><au>Huayu Wu</au><au>Wei Wu</au><au>Shili Xiang</au><au>Kian-Lee Tan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Privacy Preservation in Streaming Data Collection</atitle><btitle>2012 IEEE 18th International Conference on Parallel and Distributed Systems</btitle><stitle>PADSW</stitle><date>2012-12</date><risdate>2012</risdate><spage>810</spage><epage>815</epage><pages>810-815</pages><issn>1521-9097</issn><eissn>2690-5965</eissn><isbn>9781467345651</isbn><isbn>1467345652</isbn><eisbn>9780769549033</eisbn><eisbn>0769549039</eisbn><coden>IEEPAD</coden><abstract>Big data management and analysis has become a hot topic in academic and industrial research. In fact, a large portion of big data in service today are initially streaming data. To preserve the privacy of such data that are collected from data streams, the most efficient way is to control the process of data collection according to corresponding privacy polices. In this paper, we design a framework to support data stream management with privacy-preserving capabilities. In particular, we focus on two premier principles of data privacy, limited disclosure and limited collection. With these two principles guaranteed, the archived data will not necessarily be checked for privacy protection, before analysis and other operations can be done.</abstract><pub>IEEE</pub><doi>10.1109/ICPADS.2012.132</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-9097
ispartof 2012 IEEE 18th International Conference on Parallel and Distributed Systems, 2012, p.810-815
issn 1521-9097
2690-5965
language eng
recordid cdi_ieee_primary_6413600
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Access control
Data privacy
Information management
limited collection
limited disclosure
policy enforcement
Privacy
privacy preservation
streaming data
Vegetation
title Privacy Preservation in Streaming Data Collection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Privacy%20Preservation%20in%20Streaming%20Data%20Collection&rft.btitle=2012%20IEEE%2018th%20International%20Conference%20on%20Parallel%20and%20Distributed%20Systems&rft.au=Wee%20Siong%20Ng&rft.date=2012-12&rft.spage=810&rft.epage=815&rft.pages=810-815&rft.issn=1521-9097&rft.eissn=2690-5965&rft.isbn=9781467345651&rft.isbn_list=1467345652&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICPADS.2012.132&rft_dat=%3Cieee_6IE%3E6413600%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549033&rft.eisbn_list=0769549039&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6413600&rfr_iscdi=true