Real-time obstacle avoidance and Path planning of a self-navigated autonomous biped robot using RugBat sonar sensors and modular digital image processing
This paper introduces a method for integrating real-time obstacle avoidance capability in two-legged walking robots i.e. Biped using Sonar and Ultrasonic sensors embedded within the super-structure of the robot. The main objective of this paper is to elaborate the method involving the use of sonar a...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a method for integrating real-time obstacle avoidance capability in two-legged walking robots i.e. Biped using Sonar and Ultrasonic sensors embedded within the super-structure of the robot. The main objective of this paper is to elaborate the method involving the use of sonar and ultrasonic sensors for computing and analyzing path in real-time and avoiding obstacles based-on the computational algorithm embedded on the micro-controller. The Biped under consideration for this paper works on a 4-bar mechanism (4-DOF) and fulfills the Grubler/Kutzbach Mobility equation. The Biped is equipped with two-linear DC actuators fitted in the foot, providing effective turning radius and tilting of the Biped structure based on the obstacle avoidance algorithm. This paper also focuses on the design of a modular wireless segment that provides navigational control to the operator for In-Plane Path planning using Digital image processing filters and limiters embedded within the MATLAB environment. All the experimental results are directly compared with the simulated ones to prove the Sonar's and ultrasonic sensors effectiveness for In-Plane path planning. |
---|---|
DOI: | 10.1109/ICRAI.2012.6413413 |