Fuzzy support vector regression
The epsilon-SVR has two limitations. Firstly, the tube radius (epsilon) or noise rate along the y-axis must be already specified. Secondly, this method is suitable for function estimation according to training data in which noise is independent of input x (is constant). To resolving these limitation...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | |
container_start_page | 28 |
container_title | |
container_volume | |
creator | Forghani, Y. Yazdi, H. S. Tabrizi, Reza Sigari Akbarzadeh-T, Mohammad-R |
description | The epsilon-SVR has two limitations. Firstly, the tube radius (epsilon) or noise rate along the y-axis must be already specified. Secondly, this method is suitable for function estimation according to training data in which noise is independent of input x (is constant). To resolving these limitations, in approaches like v-SVIRN, the tube radius or the radius of estimated interval function which can be variable with respect to input x, is determined automatically. Then, for the test sample x, the centre of interval function is reported as the most probable value of output according to training samples. This method is useful when the noise of data along the y-axis has a symmetric distribution. In such situation, the centre of interval function and the most probable value of function are identical. In practice, the noise of data along the y-axis may be from an asymmetric distribution. In this paper, we propose a novel approach which estimates simultaneously an interval function and a triangular fuzzy function. The estimated interval function of our proposed method is similar to the estimated function of v-SVIRN. The center of triangular fuzzy function is the most probable value of function according to training samples which is important when the noise of training data along the y-axis is from an asymmetric distribution. |
doi_str_mv | 10.1109/ICCKE.2011.6413319 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6413319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6413319</ieee_id><sourcerecordid>6413319</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-91ffc4e398bd6454f9bd851351df620d38ad44e5146c1fa7cf10907915e877b53</originalsourceid><addsrcrecordid>eNo1j91Kw0AUhE8RoVrzAnphXiBxz_7vpYTWlha8UfCuJNmzElETdlOhfXoD1qthYJj5BuAWWYnI3MOmqrbLkjPEUksUAt0MMmcsSm2EMijUBVz_G_42hyylD8amPNMc-RXcrw6n0zFPh2Ho45j_UDv2MY_0Himlrv--gctQfybKzrqA19XypVoXu-enTfW4Kzo0aiwchtBKEs42Xkslg2u8VdM8-qA588LWXkpSE0qLoTZtmOiZcajIGtMosYC7v96OiPZD7L7qeNyfP4lfxbw-nA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy support vector regression</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Forghani, Y. ; Yazdi, H. S. ; Tabrizi, Reza Sigari ; Akbarzadeh-T, Mohammad-R</creator><creatorcontrib>Forghani, Y. ; Yazdi, H. S. ; Tabrizi, Reza Sigari ; Akbarzadeh-T, Mohammad-R</creatorcontrib><description>The epsilon-SVR has two limitations. Firstly, the tube radius (epsilon) or noise rate along the y-axis must be already specified. Secondly, this method is suitable for function estimation according to training data in which noise is independent of input x (is constant). To resolving these limitations, in approaches like v-SVIRN, the tube radius or the radius of estimated interval function which can be variable with respect to input x, is determined automatically. Then, for the test sample x, the centre of interval function is reported as the most probable value of output according to training samples. This method is useful when the noise of data along the y-axis has a symmetric distribution. In such situation, the centre of interval function and the most probable value of function are identical. In practice, the noise of data along the y-axis may be from an asymmetric distribution. In this paper, we propose a novel approach which estimates simultaneously an interval function and a triangular fuzzy function. The estimated interval function of our proposed method is similar to the estimated function of v-SVIRN. The center of triangular fuzzy function is the most probable value of function according to training samples which is important when the noise of training data along the y-axis is from an asymmetric distribution.</description><identifier>ISBN: 146735712X</identifier><identifier>ISBN: 9781467357128</identifier><identifier>EISBN: 9781467357135</identifier><identifier>EISBN: 1467357138</identifier><identifier>EISBN: 1467357111</identifier><identifier>EISBN: 9781467357111</identifier><identifier>DOI: 10.1109/ICCKE.2011.6413319</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; Electron tubes ; Fuzzy ; Fuzzy sets ; Interval ; Noise ; Support vector machines ; Support vector machines (SVMs) ; Support vector regression machines ; Training ; Training data</subject><ispartof>2011 1st International eConference on Computer and Knowledge Engineering (ICCKE), 2011, p.28-33</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6413319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6413319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Forghani, Y.</creatorcontrib><creatorcontrib>Yazdi, H. S.</creatorcontrib><creatorcontrib>Tabrizi, Reza Sigari</creatorcontrib><creatorcontrib>Akbarzadeh-T, Mohammad-R</creatorcontrib><title>Fuzzy support vector regression</title><title>2011 1st International eConference on Computer and Knowledge Engineering (ICCKE)</title><addtitle>ICCKE</addtitle><description>The epsilon-SVR has two limitations. Firstly, the tube radius (epsilon) or noise rate along the y-axis must be already specified. Secondly, this method is suitable for function estimation according to training data in which noise is independent of input x (is constant). To resolving these limitations, in approaches like v-SVIRN, the tube radius or the radius of estimated interval function which can be variable with respect to input x, is determined automatically. Then, for the test sample x, the centre of interval function is reported as the most probable value of output according to training samples. This method is useful when the noise of data along the y-axis has a symmetric distribution. In such situation, the centre of interval function and the most probable value of function are identical. In practice, the noise of data along the y-axis may be from an asymmetric distribution. In this paper, we propose a novel approach which estimates simultaneously an interval function and a triangular fuzzy function. The estimated interval function of our proposed method is similar to the estimated function of v-SVIRN. The center of triangular fuzzy function is the most probable value of function according to training samples which is important when the noise of training data along the y-axis is from an asymmetric distribution.</description><subject>Computers</subject><subject>Electron tubes</subject><subject>Fuzzy</subject><subject>Fuzzy sets</subject><subject>Interval</subject><subject>Noise</subject><subject>Support vector machines</subject><subject>Support vector machines (SVMs)</subject><subject>Support vector regression machines</subject><subject>Training</subject><subject>Training data</subject><isbn>146735712X</isbn><isbn>9781467357128</isbn><isbn>9781467357135</isbn><isbn>1467357138</isbn><isbn>1467357111</isbn><isbn>9781467357111</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91Kw0AUhE8RoVrzAnphXiBxz_7vpYTWlha8UfCuJNmzElETdlOhfXoD1qthYJj5BuAWWYnI3MOmqrbLkjPEUksUAt0MMmcsSm2EMijUBVz_G_42hyylD8amPNMc-RXcrw6n0zFPh2Ho45j_UDv2MY_0Himlrv--gctQfybKzrqA19XypVoXu-enTfW4Kzo0aiwchtBKEs42Xkslg2u8VdM8-qA588LWXkpSE0qLoTZtmOiZcajIGtMosYC7v96OiPZD7L7qeNyfP4lfxbw-nA</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Forghani, Y.</creator><creator>Yazdi, H. S.</creator><creator>Tabrizi, Reza Sigari</creator><creator>Akbarzadeh-T, Mohammad-R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Fuzzy support vector regression</title><author>Forghani, Y. ; Yazdi, H. S. ; Tabrizi, Reza Sigari ; Akbarzadeh-T, Mohammad-R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-91ffc4e398bd6454f9bd851351df620d38ad44e5146c1fa7cf10907915e877b53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computers</topic><topic>Electron tubes</topic><topic>Fuzzy</topic><topic>Fuzzy sets</topic><topic>Interval</topic><topic>Noise</topic><topic>Support vector machines</topic><topic>Support vector machines (SVMs)</topic><topic>Support vector regression machines</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Forghani, Y.</creatorcontrib><creatorcontrib>Yazdi, H. S.</creatorcontrib><creatorcontrib>Tabrizi, Reza Sigari</creatorcontrib><creatorcontrib>Akbarzadeh-T, Mohammad-R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Forghani, Y.</au><au>Yazdi, H. S.</au><au>Tabrizi, Reza Sigari</au><au>Akbarzadeh-T, Mohammad-R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy support vector regression</atitle><btitle>2011 1st International eConference on Computer and Knowledge Engineering (ICCKE)</btitle><stitle>ICCKE</stitle><date>2011-10</date><risdate>2011</risdate><spage>28</spage><epage>33</epage><pages>28-33</pages><isbn>146735712X</isbn><isbn>9781467357128</isbn><eisbn>9781467357135</eisbn><eisbn>1467357138</eisbn><eisbn>1467357111</eisbn><eisbn>9781467357111</eisbn><abstract>The epsilon-SVR has two limitations. Firstly, the tube radius (epsilon) or noise rate along the y-axis must be already specified. Secondly, this method is suitable for function estimation according to training data in which noise is independent of input x (is constant). To resolving these limitations, in approaches like v-SVIRN, the tube radius or the radius of estimated interval function which can be variable with respect to input x, is determined automatically. Then, for the test sample x, the centre of interval function is reported as the most probable value of output according to training samples. This method is useful when the noise of data along the y-axis has a symmetric distribution. In such situation, the centre of interval function and the most probable value of function are identical. In practice, the noise of data along the y-axis may be from an asymmetric distribution. In this paper, we propose a novel approach which estimates simultaneously an interval function and a triangular fuzzy function. The estimated interval function of our proposed method is similar to the estimated function of v-SVIRN. The center of triangular fuzzy function is the most probable value of function according to training samples which is important when the noise of training data along the y-axis is from an asymmetric distribution.</abstract><pub>IEEE</pub><doi>10.1109/ICCKE.2011.6413319</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 146735712X |
ispartof | 2011 1st International eConference on Computer and Knowledge Engineering (ICCKE), 2011, p.28-33 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6413319 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computers Electron tubes Fuzzy Fuzzy sets Interval Noise Support vector machines Support vector machines (SVMs) Support vector regression machines Training Training data |
title | Fuzzy support vector regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20support%20vector%20regression&rft.btitle=2011%201st%20International%20eConference%20on%20Computer%20and%20Knowledge%20Engineering%20(ICCKE)&rft.au=Forghani,%20Y.&rft.date=2011-10&rft.spage=28&rft.epage=33&rft.pages=28-33&rft.isbn=146735712X&rft.isbn_list=9781467357128&rft_id=info:doi/10.1109/ICCKE.2011.6413319&rft_dat=%3Cieee_6IE%3E6413319%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467357135&rft.eisbn_list=1467357138&rft.eisbn_list=1467357111&rft.eisbn_list=9781467357111&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6413319&rfr_iscdi=true |