Fuzzy support vector regression

The epsilon-SVR has two limitations. Firstly, the tube radius (epsilon) or noise rate along the y-axis must be already specified. Secondly, this method is suitable for function estimation according to training data in which noise is independent of input x (is constant). To resolving these limitation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Forghani, Y., Yazdi, H. S., Tabrizi, Reza Sigari, Akbarzadeh-T, Mohammad-R
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue
container_start_page 28
container_title
container_volume
creator Forghani, Y.
Yazdi, H. S.
Tabrizi, Reza Sigari
Akbarzadeh-T, Mohammad-R
description The epsilon-SVR has two limitations. Firstly, the tube radius (epsilon) or noise rate along the y-axis must be already specified. Secondly, this method is suitable for function estimation according to training data in which noise is independent of input x (is constant). To resolving these limitations, in approaches like v-SVIRN, the tube radius or the radius of estimated interval function which can be variable with respect to input x, is determined automatically. Then, for the test sample x, the centre of interval function is reported as the most probable value of output according to training samples. This method is useful when the noise of data along the y-axis has a symmetric distribution. In such situation, the centre of interval function and the most probable value of function are identical. In practice, the noise of data along the y-axis may be from an asymmetric distribution. In this paper, we propose a novel approach which estimates simultaneously an interval function and a triangular fuzzy function. The estimated interval function of our proposed method is similar to the estimated function of v-SVIRN. The center of triangular fuzzy function is the most probable value of function according to training samples which is important when the noise of training data along the y-axis is from an asymmetric distribution.
doi_str_mv 10.1109/ICCKE.2011.6413319
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6413319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6413319</ieee_id><sourcerecordid>6413319</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-91ffc4e398bd6454f9bd851351df620d38ad44e5146c1fa7cf10907915e877b53</originalsourceid><addsrcrecordid>eNo1j91Kw0AUhE8RoVrzAnphXiBxz_7vpYTWlha8UfCuJNmzElETdlOhfXoD1qthYJj5BuAWWYnI3MOmqrbLkjPEUksUAt0MMmcsSm2EMijUBVz_G_42hyylD8amPNMc-RXcrw6n0zFPh2Ho45j_UDv2MY_0Himlrv--gctQfybKzrqA19XypVoXu-enTfW4Kzo0aiwchtBKEs42Xkslg2u8VdM8-qA588LWXkpSE0qLoTZtmOiZcajIGtMosYC7v96OiPZD7L7qeNyfP4lfxbw-nA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy support vector regression</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Forghani, Y. ; Yazdi, H. S. ; Tabrizi, Reza Sigari ; Akbarzadeh-T, Mohammad-R</creator><creatorcontrib>Forghani, Y. ; Yazdi, H. S. ; Tabrizi, Reza Sigari ; Akbarzadeh-T, Mohammad-R</creatorcontrib><description>The epsilon-SVR has two limitations. Firstly, the tube radius (epsilon) or noise rate along the y-axis must be already specified. Secondly, this method is suitable for function estimation according to training data in which noise is independent of input x (is constant). To resolving these limitations, in approaches like v-SVIRN, the tube radius or the radius of estimated interval function which can be variable with respect to input x, is determined automatically. Then, for the test sample x, the centre of interval function is reported as the most probable value of output according to training samples. This method is useful when the noise of data along the y-axis has a symmetric distribution. In such situation, the centre of interval function and the most probable value of function are identical. In practice, the noise of data along the y-axis may be from an asymmetric distribution. In this paper, we propose a novel approach which estimates simultaneously an interval function and a triangular fuzzy function. The estimated interval function of our proposed method is similar to the estimated function of v-SVIRN. The center of triangular fuzzy function is the most probable value of function according to training samples which is important when the noise of training data along the y-axis is from an asymmetric distribution.</description><identifier>ISBN: 146735712X</identifier><identifier>ISBN: 9781467357128</identifier><identifier>EISBN: 9781467357135</identifier><identifier>EISBN: 1467357138</identifier><identifier>EISBN: 1467357111</identifier><identifier>EISBN: 9781467357111</identifier><identifier>DOI: 10.1109/ICCKE.2011.6413319</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computers ; Electron tubes ; Fuzzy ; Fuzzy sets ; Interval ; Noise ; Support vector machines ; Support vector machines (SVMs) ; Support vector regression machines ; Training ; Training data</subject><ispartof>2011 1st International eConference on Computer and Knowledge Engineering (ICCKE), 2011, p.28-33</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6413319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6413319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Forghani, Y.</creatorcontrib><creatorcontrib>Yazdi, H. S.</creatorcontrib><creatorcontrib>Tabrizi, Reza Sigari</creatorcontrib><creatorcontrib>Akbarzadeh-T, Mohammad-R</creatorcontrib><title>Fuzzy support vector regression</title><title>2011 1st International eConference on Computer and Knowledge Engineering (ICCKE)</title><addtitle>ICCKE</addtitle><description>The epsilon-SVR has two limitations. Firstly, the tube radius (epsilon) or noise rate along the y-axis must be already specified. Secondly, this method is suitable for function estimation according to training data in which noise is independent of input x (is constant). To resolving these limitations, in approaches like v-SVIRN, the tube radius or the radius of estimated interval function which can be variable with respect to input x, is determined automatically. Then, for the test sample x, the centre of interval function is reported as the most probable value of output according to training samples. This method is useful when the noise of data along the y-axis has a symmetric distribution. In such situation, the centre of interval function and the most probable value of function are identical. In practice, the noise of data along the y-axis may be from an asymmetric distribution. In this paper, we propose a novel approach which estimates simultaneously an interval function and a triangular fuzzy function. The estimated interval function of our proposed method is similar to the estimated function of v-SVIRN. The center of triangular fuzzy function is the most probable value of function according to training samples which is important when the noise of training data along the y-axis is from an asymmetric distribution.</description><subject>Computers</subject><subject>Electron tubes</subject><subject>Fuzzy</subject><subject>Fuzzy sets</subject><subject>Interval</subject><subject>Noise</subject><subject>Support vector machines</subject><subject>Support vector machines (SVMs)</subject><subject>Support vector regression machines</subject><subject>Training</subject><subject>Training data</subject><isbn>146735712X</isbn><isbn>9781467357128</isbn><isbn>9781467357135</isbn><isbn>1467357138</isbn><isbn>1467357111</isbn><isbn>9781467357111</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91Kw0AUhE8RoVrzAnphXiBxz_7vpYTWlha8UfCuJNmzElETdlOhfXoD1qthYJj5BuAWWYnI3MOmqrbLkjPEUksUAt0MMmcsSm2EMijUBVz_G_42hyylD8amPNMc-RXcrw6n0zFPh2Ho45j_UDv2MY_0Himlrv--gctQfybKzrqA19XypVoXu-enTfW4Kzo0aiwchtBKEs42Xkslg2u8VdM8-qA588LWXkpSE0qLoTZtmOiZcajIGtMosYC7v96OiPZD7L7qeNyfP4lfxbw-nA</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Forghani, Y.</creator><creator>Yazdi, H. S.</creator><creator>Tabrizi, Reza Sigari</creator><creator>Akbarzadeh-T, Mohammad-R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Fuzzy support vector regression</title><author>Forghani, Y. ; Yazdi, H. S. ; Tabrizi, Reza Sigari ; Akbarzadeh-T, Mohammad-R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-91ffc4e398bd6454f9bd851351df620d38ad44e5146c1fa7cf10907915e877b53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computers</topic><topic>Electron tubes</topic><topic>Fuzzy</topic><topic>Fuzzy sets</topic><topic>Interval</topic><topic>Noise</topic><topic>Support vector machines</topic><topic>Support vector machines (SVMs)</topic><topic>Support vector regression machines</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Forghani, Y.</creatorcontrib><creatorcontrib>Yazdi, H. S.</creatorcontrib><creatorcontrib>Tabrizi, Reza Sigari</creatorcontrib><creatorcontrib>Akbarzadeh-T, Mohammad-R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Forghani, Y.</au><au>Yazdi, H. S.</au><au>Tabrizi, Reza Sigari</au><au>Akbarzadeh-T, Mohammad-R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy support vector regression</atitle><btitle>2011 1st International eConference on Computer and Knowledge Engineering (ICCKE)</btitle><stitle>ICCKE</stitle><date>2011-10</date><risdate>2011</risdate><spage>28</spage><epage>33</epage><pages>28-33</pages><isbn>146735712X</isbn><isbn>9781467357128</isbn><eisbn>9781467357135</eisbn><eisbn>1467357138</eisbn><eisbn>1467357111</eisbn><eisbn>9781467357111</eisbn><abstract>The epsilon-SVR has two limitations. Firstly, the tube radius (epsilon) or noise rate along the y-axis must be already specified. Secondly, this method is suitable for function estimation according to training data in which noise is independent of input x (is constant). To resolving these limitations, in approaches like v-SVIRN, the tube radius or the radius of estimated interval function which can be variable with respect to input x, is determined automatically. Then, for the test sample x, the centre of interval function is reported as the most probable value of output according to training samples. This method is useful when the noise of data along the y-axis has a symmetric distribution. In such situation, the centre of interval function and the most probable value of function are identical. In practice, the noise of data along the y-axis may be from an asymmetric distribution. In this paper, we propose a novel approach which estimates simultaneously an interval function and a triangular fuzzy function. The estimated interval function of our proposed method is similar to the estimated function of v-SVIRN. The center of triangular fuzzy function is the most probable value of function according to training samples which is important when the noise of training data along the y-axis is from an asymmetric distribution.</abstract><pub>IEEE</pub><doi>10.1109/ICCKE.2011.6413319</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 146735712X
ispartof 2011 1st International eConference on Computer and Knowledge Engineering (ICCKE), 2011, p.28-33
issn
language eng
recordid cdi_ieee_primary_6413319
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computers
Electron tubes
Fuzzy
Fuzzy sets
Interval
Noise
Support vector machines
Support vector machines (SVMs)
Support vector regression machines
Training
Training data
title Fuzzy support vector regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20support%20vector%20regression&rft.btitle=2011%201st%20International%20eConference%20on%20Computer%20and%20Knowledge%20Engineering%20(ICCKE)&rft.au=Forghani,%20Y.&rft.date=2011-10&rft.spage=28&rft.epage=33&rft.pages=28-33&rft.isbn=146735712X&rft.isbn_list=9781467357128&rft_id=info:doi/10.1109/ICCKE.2011.6413319&rft_dat=%3Cieee_6IE%3E6413319%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467357135&rft.eisbn_list=1467357138&rft.eisbn_list=1467357111&rft.eisbn_list=9781467357111&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6413319&rfr_iscdi=true