Open answer scoring for S-CAT automated speaking test system using support vector regression
We are developing S-CAT computer test system that will be the first automated adaptive speaking test for Japanese. The speaking ability of examinees is scored using speech processing techniques without human raters. By using computers for the scoring, it is possible to largely reduce the scoring cos...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ono, Y. Otake, M. Shinozaki, T. Nisimura, R. Yamada, T. Ishizuka, K. Horiuchi, Y. Kuroiwa, S. Imai, S. |
description | We are developing S-CAT computer test system that will be the first automated adaptive speaking test for Japanese. The speaking ability of examinees is scored using speech processing techniques without human raters. By using computers for the scoring, it is possible to largely reduce the scoring cost and provide a convenient means for language learners to evaluate their learning status. While the S-CAT test has several categories of question items, open answer question is technically the most challenging one since examinees freely talk about a given topic or argue something for a given material. For this problem, we proposed to use support vector regression (SVR) with various features. Some of the features rely on speech recognition hypothesis and others do not. SVR is more robust than multiple regression and the best result was obtained when 390 dimensional features that combine everything were used. The correlation coefficients between human rated and SVR estimated scores were 0.878, 0.847, 0.853, and 0.872 for fluency, accuracy, content, and richness measures, respectively. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6411787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6411787</ieee_id><sourcerecordid>6411787</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-394c5b3979db1b46112fe30717459af7790031ddcf436c7eca1a0bc6914a43c93</originalsourceid><addsrcrecordid>eNotjMtKA0EQRVtEUON8gZv-gYGq9Gt6GYIvCGRh3Amhp6cmjDoPunqU_L0Gs7pwDudeiMK7CiwaB2BgeSluUVundGWVuRYF8wcAIIL1FdyI9-1EgwwD_1CSHMfUDQfZjkm-luvVToY5j33I1EieKHyeZCbOko-cqZcznwjP0zSmLL8p5r8y0SERczcOd-KqDV9MxXkX4u3xYbd-Ljfbp5f1alN2CCaXyutoauWdb2qstUVctqTAodPGh9Y5D6CwaWKrlY2OYsAAdbQeddAqerUQ9_-_HRHtp9T1IR33ViO6yqlf4rVPXQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Open answer scoring for S-CAT automated speaking test system using support vector regression</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ono, Y. ; Otake, M. ; Shinozaki, T. ; Nisimura, R. ; Yamada, T. ; Ishizuka, K. ; Horiuchi, Y. ; Kuroiwa, S. ; Imai, S.</creator><creatorcontrib>Ono, Y. ; Otake, M. ; Shinozaki, T. ; Nisimura, R. ; Yamada, T. ; Ishizuka, K. ; Horiuchi, Y. ; Kuroiwa, S. ; Imai, S.</creatorcontrib><description>We are developing S-CAT computer test system that will be the first automated adaptive speaking test for Japanese. The speaking ability of examinees is scored using speech processing techniques without human raters. By using computers for the scoring, it is possible to largely reduce the scoring cost and provide a convenient means for language learners to evaluate their learning status. While the S-CAT test has several categories of question items, open answer question is technically the most challenging one since examinees freely talk about a given topic or argue something for a given material. For this problem, we proposed to use support vector regression (SVR) with various features. Some of the features rely on speech recognition hypothesis and others do not. SVR is more robust than multiple regression and the best result was obtained when 390 dimensional features that combine everything were used. The correlation coefficients between human rated and SVR estimated scores were 0.878, 0.847, 0.853, and 0.872 for fluency, accuracy, content, and richness measures, respectively.</description><identifier>ISBN: 1467348635</identifier><identifier>ISBN: 9781467348638</identifier><identifier>EISBN: 9780615700502</identifier><identifier>EISBN: 0615700500</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy</subject><ispartof>Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6411787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6411787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ono, Y.</creatorcontrib><creatorcontrib>Otake, M.</creatorcontrib><creatorcontrib>Shinozaki, T.</creatorcontrib><creatorcontrib>Nisimura, R.</creatorcontrib><creatorcontrib>Yamada, T.</creatorcontrib><creatorcontrib>Ishizuka, K.</creatorcontrib><creatorcontrib>Horiuchi, Y.</creatorcontrib><creatorcontrib>Kuroiwa, S.</creatorcontrib><creatorcontrib>Imai, S.</creatorcontrib><title>Open answer scoring for S-CAT automated speaking test system using support vector regression</title><title>Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference</title><addtitle>APSIPA ASC</addtitle><description>We are developing S-CAT computer test system that will be the first automated adaptive speaking test for Japanese. The speaking ability of examinees is scored using speech processing techniques without human raters. By using computers for the scoring, it is possible to largely reduce the scoring cost and provide a convenient means for language learners to evaluate their learning status. While the S-CAT test has several categories of question items, open answer question is technically the most challenging one since examinees freely talk about a given topic or argue something for a given material. For this problem, we proposed to use support vector regression (SVR) with various features. Some of the features rely on speech recognition hypothesis and others do not. SVR is more robust than multiple regression and the best result was obtained when 390 dimensional features that combine everything were used. The correlation coefficients between human rated and SVR estimated scores were 0.878, 0.847, 0.853, and 0.872 for fluency, accuracy, content, and richness measures, respectively.</description><subject>Accuracy</subject><isbn>1467348635</isbn><isbn>9781467348638</isbn><isbn>9780615700502</isbn><isbn>0615700500</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKA0EQRVtEUON8gZv-gYGq9Gt6GYIvCGRh3Amhp6cmjDoPunqU_L0Gs7pwDudeiMK7CiwaB2BgeSluUVundGWVuRYF8wcAIIL1FdyI9-1EgwwD_1CSHMfUDQfZjkm-luvVToY5j33I1EieKHyeZCbOko-cqZcznwjP0zSmLL8p5r8y0SERczcOd-KqDV9MxXkX4u3xYbd-Ljfbp5f1alN2CCaXyutoauWdb2qstUVctqTAodPGh9Y5D6CwaWKrlY2OYsAAdbQeddAqerUQ9_-_HRHtp9T1IR33ViO6yqlf4rVPXQ</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Ono, Y.</creator><creator>Otake, M.</creator><creator>Shinozaki, T.</creator><creator>Nisimura, R.</creator><creator>Yamada, T.</creator><creator>Ishizuka, K.</creator><creator>Horiuchi, Y.</creator><creator>Kuroiwa, S.</creator><creator>Imai, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Open answer scoring for S-CAT automated speaking test system using support vector regression</title><author>Ono, Y. ; Otake, M. ; Shinozaki, T. ; Nisimura, R. ; Yamada, T. ; Ishizuka, K. ; Horiuchi, Y. ; Kuroiwa, S. ; Imai, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-394c5b3979db1b46112fe30717459af7790031ddcf436c7eca1a0bc6914a43c93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><toplevel>online_resources</toplevel><creatorcontrib>Ono, Y.</creatorcontrib><creatorcontrib>Otake, M.</creatorcontrib><creatorcontrib>Shinozaki, T.</creatorcontrib><creatorcontrib>Nisimura, R.</creatorcontrib><creatorcontrib>Yamada, T.</creatorcontrib><creatorcontrib>Ishizuka, K.</creatorcontrib><creatorcontrib>Horiuchi, Y.</creatorcontrib><creatorcontrib>Kuroiwa, S.</creatorcontrib><creatorcontrib>Imai, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ono, Y.</au><au>Otake, M.</au><au>Shinozaki, T.</au><au>Nisimura, R.</au><au>Yamada, T.</au><au>Ishizuka, K.</au><au>Horiuchi, Y.</au><au>Kuroiwa, S.</au><au>Imai, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Open answer scoring for S-CAT automated speaking test system using support vector regression</atitle><btitle>Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference</btitle><stitle>APSIPA ASC</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>1467348635</isbn><isbn>9781467348638</isbn><eisbn>9780615700502</eisbn><eisbn>0615700500</eisbn><abstract>We are developing S-CAT computer test system that will be the first automated adaptive speaking test for Japanese. The speaking ability of examinees is scored using speech processing techniques without human raters. By using computers for the scoring, it is possible to largely reduce the scoring cost and provide a convenient means for language learners to evaluate their learning status. While the S-CAT test has several categories of question items, open answer question is technically the most challenging one since examinees freely talk about a given topic or argue something for a given material. For this problem, we proposed to use support vector regression (SVR) with various features. Some of the features rely on speech recognition hypothesis and others do not. SVR is more robust than multiple regression and the best result was obtained when 390 dimensional features that combine everything were used. The correlation coefficients between human rated and SVR estimated scores were 0.878, 0.847, 0.853, and 0.872 for fluency, accuracy, content, and richness measures, respectively.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467348635 |
ispartof | Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, 2012, p.1-4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6411787 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy |
title | Open answer scoring for S-CAT automated speaking test system using support vector regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Open%20answer%20scoring%20for%20S-CAT%20automated%20speaking%20test%20system%20using%20support%20vector%20regression&rft.btitle=Proceedings%20of%20The%202012%20Asia%20Pacific%20Signal%20and%20Information%20Processing%20Association%20Annual%20Summit%20and%20Conference&rft.au=Ono,%20Y.&rft.date=2012-12&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=1467348635&rft.isbn_list=9781467348638&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6411787%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780615700502&rft.eisbn_list=0615700500&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6411787&rfr_iscdi=true |