Analyzing Tubular Tissue in Histopathological Thin Sections

We propose a method for automatic segmentation of tubules in the stained thin sections of various tissue types. Tubules consist of one or more layers of cells surrounding a cavity. The segmented tubules can be used to study the morphology of the tissue. Some research has been done to automatically e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fakhrzadeh, A., Spörndly-Nees, E., Holm, L., Hendriks, C. L. L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Fakhrzadeh, A.
Spörndly-Nees, E.
Holm, L.
Hendriks, C. L. L.
description We propose a method for automatic segmentation of tubules in the stained thin sections of various tissue types. Tubules consist of one or more layers of cells surrounding a cavity. The segmented tubules can be used to study the morphology of the tissue. Some research has been done to automatically estimate the density of tubules. To the best of our knowledge, no one has been able to, fully automatically, segment the whole tubule. Usually the border between tubules is subtle and appears broken in a straight-forward segmentation. Here we suggest delineating these borders using the geodesic distance transform. We apply this method on images of Periodic Acid Shiffs (PAS) stained thin sections of testicular tissue, delineating 89% of the tubules correctly.
doi_str_mv 10.1109/DICTA.2012.6411735
format Conference Proceeding
fullrecord <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_6411735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6411735</ieee_id><sourcerecordid>oai_slubar_slu_se_41191</sourcerecordid><originalsourceid>FETCH-LOGICAL-i294t-3d35f5e2c99b466984a90a15fbf309961cdc8ba7d8c4a7414c4fe551fa10b88a3</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_CICMrcF9BLP4CdeU3SJngqm7rBwIPVa3jJ0i1S29E0yPz0ViaCB09_3uP33uFPyBXQGQBVt4vVvCpnGYVslnOAgokTMlWFBJ4XLAMJ4vTPTOU5mYbwRikd73OZsQtyV7bYHD59u02qaGKDfVL5EKJLfJssfRi6PQ67rum23mKTVLtx_ezs4Ls2XJKzGpvgpj85IS8P99V8ma6fHlfzcp36TPEhZRsmauEyq5Thea4kR0URRG1qRpXKwW6sNFhspOVYcOCW104IqBGokRLZhKTHv-HD7aPR-96_Y3_QHXodmmiw_w4dnB5bUDD6m3_9wr-Wuuu3OkYNUgouR3595N4594t_GmVfOHpqWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analyzing Tubular Tissue in Histopathological Thin Sections</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fakhrzadeh, A. ; Spörndly-Nees, E. ; Holm, L. ; Hendriks, C. L. L.</creator><creatorcontrib>Fakhrzadeh, A. ; Spörndly-Nees, E. ; Holm, L. ; Hendriks, C. L. L. ; Sveriges lantbruksuniversitet</creatorcontrib><description>We propose a method for automatic segmentation of tubules in the stained thin sections of various tissue types. Tubules consist of one or more layers of cells surrounding a cavity. The segmented tubules can be used to study the morphology of the tissue. Some research has been done to automatically estimate the density of tubules. To the best of our knowledge, no one has been able to, fully automatically, segment the whole tubule. Usually the border between tubules is subtle and appears broken in a straight-forward segmentation. Here we suggest delineating these borders using the geodesic distance transform. We apply this method on images of Periodic Acid Shiffs (PAS) stained thin sections of testicular tissue, delineating 89% of the tubules correctly.</description><identifier>ISBN: 9781467321808</identifier><identifier>ISBN: 146732180X</identifier><identifier>EISBN: 9781467321815</identifier><identifier>EISBN: 1467321818</identifier><identifier>EISBN: 9781467321792</identifier><identifier>EISBN: 1467321796</identifier><identifier>DOI: 10.1109/DICTA.2012.6411735</identifier><language>eng</language><publisher>IEEE</publisher><subject>Glands ; Image color analysis ; Image edge detection ; Image segmentation ; Level set ; Medical Image Processing ; Medicinsk bildbehandling ; Morphology ; Transforms</subject><ispartof>2012 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING TECHNIQUES AND APPLICATIONS (DICTA), 2012, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6411735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6411735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-188548$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/41191$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Fakhrzadeh, A.</creatorcontrib><creatorcontrib>Spörndly-Nees, E.</creatorcontrib><creatorcontrib>Holm, L.</creatorcontrib><creatorcontrib>Hendriks, C. L. L.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Analyzing Tubular Tissue in Histopathological Thin Sections</title><title>2012 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING TECHNIQUES AND APPLICATIONS (DICTA)</title><addtitle>DICTA</addtitle><description>We propose a method for automatic segmentation of tubules in the stained thin sections of various tissue types. Tubules consist of one or more layers of cells surrounding a cavity. The segmented tubules can be used to study the morphology of the tissue. Some research has been done to automatically estimate the density of tubules. To the best of our knowledge, no one has been able to, fully automatically, segment the whole tubule. Usually the border between tubules is subtle and appears broken in a straight-forward segmentation. Here we suggest delineating these borders using the geodesic distance transform. We apply this method on images of Periodic Acid Shiffs (PAS) stained thin sections of testicular tissue, delineating 89% of the tubules correctly.</description><subject>Glands</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Level set</subject><subject>Medical Image Processing</subject><subject>Medicinsk bildbehandling</subject><subject>Morphology</subject><subject>Transforms</subject><isbn>9781467321808</isbn><isbn>146732180X</isbn><isbn>9781467321815</isbn><isbn>1467321818</isbn><isbn>9781467321792</isbn><isbn>1467321796</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp10EFLwzAUB_CICMrcF9BLP4CdeU3SJngqm7rBwIPVa3jJ0i1S29E0yPz0ViaCB09_3uP33uFPyBXQGQBVt4vVvCpnGYVslnOAgokTMlWFBJ4XLAMJ4vTPTOU5mYbwRikd73OZsQtyV7bYHD59u02qaGKDfVL5EKJLfJssfRi6PQ67rum23mKTVLtx_ezs4Ls2XJKzGpvgpj85IS8P99V8ma6fHlfzcp36TPEhZRsmauEyq5Thea4kR0URRG1qRpXKwW6sNFhspOVYcOCW104IqBGokRLZhKTHv-HD7aPR-96_Y3_QHXodmmiw_w4dnB5bUDD6m3_9wr-Wuuu3OkYNUgouR3595N4594t_GmVfOHpqWw</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Fakhrzadeh, A.</creator><creator>Spörndly-Nees, E.</creator><creator>Holm, L.</creator><creator>Hendriks, C. L. L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>DF2</scope></search><sort><creationdate>201212</creationdate><title>Analyzing Tubular Tissue in Histopathological Thin Sections</title><author>Fakhrzadeh, A. ; Spörndly-Nees, E. ; Holm, L. ; Hendriks, C. L. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i294t-3d35f5e2c99b466984a90a15fbf309961cdc8ba7d8c4a7414c4fe551fa10b88a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Glands</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Level set</topic><topic>Medical Image Processing</topic><topic>Medicinsk bildbehandling</topic><topic>Morphology</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Fakhrzadeh, A.</creatorcontrib><creatorcontrib>Spörndly-Nees, E.</creatorcontrib><creatorcontrib>Holm, L.</creatorcontrib><creatorcontrib>Hendriks, C. L. L.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Uppsala universitet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fakhrzadeh, A.</au><au>Spörndly-Nees, E.</au><au>Holm, L.</au><au>Hendriks, C. L. L.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analyzing Tubular Tissue in Histopathological Thin Sections</atitle><btitle>2012 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING TECHNIQUES AND APPLICATIONS (DICTA)</btitle><stitle>DICTA</stitle><date>2012-12</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467321808</isbn><isbn>146732180X</isbn><eisbn>9781467321815</eisbn><eisbn>1467321818</eisbn><eisbn>9781467321792</eisbn><eisbn>1467321796</eisbn><abstract>We propose a method for automatic segmentation of tubules in the stained thin sections of various tissue types. Tubules consist of one or more layers of cells surrounding a cavity. The segmented tubules can be used to study the morphology of the tissue. Some research has been done to automatically estimate the density of tubules. To the best of our knowledge, no one has been able to, fully automatically, segment the whole tubule. Usually the border between tubules is subtle and appears broken in a straight-forward segmentation. Here we suggest delineating these borders using the geodesic distance transform. We apply this method on images of Periodic Acid Shiffs (PAS) stained thin sections of testicular tissue, delineating 89% of the tubules correctly.</abstract><pub>IEEE</pub><doi>10.1109/DICTA.2012.6411735</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467321808
ispartof 2012 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING TECHNIQUES AND APPLICATIONS (DICTA), 2012, p.1-6
issn
language eng
recordid cdi_ieee_primary_6411735
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Glands
Image color analysis
Image edge detection
Image segmentation
Level set
Medical Image Processing
Medicinsk bildbehandling
Morphology
Transforms
title Analyzing Tubular Tissue in Histopathological Thin Sections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analyzing%20Tubular%20Tissue%20in%20Histopathological%20Thin%20Sections&rft.btitle=2012%20INTERNATIONAL%20CONFERENCE%20ON%20DIGITAL%20IMAGE%20COMPUTING%20TECHNIQUES%20AND%20APPLICATIONS%20(DICTA)&rft.au=Fakhrzadeh,%20A.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2012-12&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467321808&rft.isbn_list=146732180X&rft_id=info:doi/10.1109/DICTA.2012.6411735&rft_dat=%3Cswepub_6IE%3Eoai_slubar_slu_se_41191%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467321815&rft.eisbn_list=1467321818&rft.eisbn_list=9781467321792&rft.eisbn_list=1467321796&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6411735&rfr_iscdi=true