Self-sustained micromechanical resonant pressure sensors

This work presents a new gas pressure sensing technique based on self-sustained oscillations in micromechanical thermal-piezoresistive resonators. Electrothermal force generation in such structures can be coupled to the structural stress through the piezoresistive effect. This could lead to spontane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiaobo Guo, Rahafrooz, A., Yun-bo Yi, Pourkamali, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Xiaobo Guo
Rahafrooz, A.
Yun-bo Yi
Pourkamali, S.
description This work presents a new gas pressure sensing technique based on self-sustained oscillations in micromechanical thermal-piezoresistive resonators. Electrothermal force generation in such structures can be coupled to the structural stress through the piezoresistive effect. This could lead to spontaneous mechanical vibrations in the resonant structures upon application of a large enough DC bias current. It has been demonstrated via measurements that resonant frequency of such oscillators is sharply dependent on the surrounding gas pressure. For a 3.46MHz thermal piezoresistive oscillator, frequency shift of -2300ppm was observed by changing the surrounding air pressure from 84kPa to 43kPa. In addition, the same structure was also operated in a forced excitation mode as a resonator actuated by a combination of DC and AC currents. Interestingly, the frequency shift in the self-sustained oscillation mode is far more significant than the frequency shift in forced resonance mode and is opposite in direction. In order to explain this observation, a mathematical model has been developed for the thermal-piezoresistive oscillators. The final solution from this model indicates that the dynamic stiffness of the spontaneously vibrating structures decreases as the value of the damping coefficient is reduced at lower gas pressures.
doi_str_mv 10.1109/ICSENS.2012.6411382
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6411382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6411382</ieee_id><sourcerecordid>6411382</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4de98a77cacaab720fe7f47ed0a4a88a44db910e4c86853f4e4d7a16ee6bc4153</originalsourceid><addsrcrecordid>eNpVkMtKw0AUhscbGGufoJu8wMQ5k7kuJVQtFF2k-3IyOcGRXEomXfj2Cnbj6v_gg2_xM7YBUQAI_7Sr6u17XUgBsjAKoHTyiq29daC0tWCN9tcsk2Ac91L6m3_OmFuWgS8FF6XX9-whpS8hpNDSZczV1Hc8ndOCcaQ2H2KYp4HCJ44xYJ_PlKYRxyU__VI6z5QnGtM0p0d212GfaH3ZFTu8bA_VG99_vO6q5z2PXixcteQdWhswIDZWio5spyy1AhU6h0q1jQdBKjjjdNkpUq1FMESmCQp0uWKbv2wkouNpjgPO38fLB-UPm-1NhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Self-sustained micromechanical resonant pressure sensors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaobo Guo ; Rahafrooz, A. ; Yun-bo Yi ; Pourkamali, S.</creator><creatorcontrib>Xiaobo Guo ; Rahafrooz, A. ; Yun-bo Yi ; Pourkamali, S.</creatorcontrib><description>This work presents a new gas pressure sensing technique based on self-sustained oscillations in micromechanical thermal-piezoresistive resonators. Electrothermal force generation in such structures can be coupled to the structural stress through the piezoresistive effect. This could lead to spontaneous mechanical vibrations in the resonant structures upon application of a large enough DC bias current. It has been demonstrated via measurements that resonant frequency of such oscillators is sharply dependent on the surrounding gas pressure. For a 3.46MHz thermal piezoresistive oscillator, frequency shift of -2300ppm was observed by changing the surrounding air pressure from 84kPa to 43kPa. In addition, the same structure was also operated in a forced excitation mode as a resonator actuated by a combination of DC and AC currents. Interestingly, the frequency shift in the self-sustained oscillation mode is far more significant than the frequency shift in forced resonance mode and is opposite in direction. In order to explain this observation, a mathematical model has been developed for the thermal-piezoresistive oscillators. The final solution from this model indicates that the dynamic stiffness of the spontaneously vibrating structures decreases as the value of the damping coefficient is reduced at lower gas pressures.</description><identifier>ISSN: 1930-0395</identifier><identifier>ISBN: 9781457717666</identifier><identifier>ISBN: 1457717662</identifier><identifier>EISSN: 2168-9229</identifier><identifier>EISBN: 9781457717659</identifier><identifier>EISBN: 9781457717673</identifier><identifier>EISBN: 1457717654</identifier><identifier>EISBN: 1457717670</identifier><identifier>DOI: 10.1109/ICSENS.2012.6411382</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Damping ; Frequency measurement ; Oscillators ; Resonant frequency ; Sensors ; Silicon</subject><ispartof>2012 IEEE Sensors, 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6411382$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6411382$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaobo Guo</creatorcontrib><creatorcontrib>Rahafrooz, A.</creatorcontrib><creatorcontrib>Yun-bo Yi</creatorcontrib><creatorcontrib>Pourkamali, S.</creatorcontrib><title>Self-sustained micromechanical resonant pressure sensors</title><title>2012 IEEE Sensors</title><addtitle>ICSENS</addtitle><description>This work presents a new gas pressure sensing technique based on self-sustained oscillations in micromechanical thermal-piezoresistive resonators. Electrothermal force generation in such structures can be coupled to the structural stress through the piezoresistive effect. This could lead to spontaneous mechanical vibrations in the resonant structures upon application of a large enough DC bias current. It has been demonstrated via measurements that resonant frequency of such oscillators is sharply dependent on the surrounding gas pressure. For a 3.46MHz thermal piezoresistive oscillator, frequency shift of -2300ppm was observed by changing the surrounding air pressure from 84kPa to 43kPa. In addition, the same structure was also operated in a forced excitation mode as a resonator actuated by a combination of DC and AC currents. Interestingly, the frequency shift in the self-sustained oscillation mode is far more significant than the frequency shift in forced resonance mode and is opposite in direction. In order to explain this observation, a mathematical model has been developed for the thermal-piezoresistive oscillators. The final solution from this model indicates that the dynamic stiffness of the spontaneously vibrating structures decreases as the value of the damping coefficient is reduced at lower gas pressures.</description><subject>Actuators</subject><subject>Damping</subject><subject>Frequency measurement</subject><subject>Oscillators</subject><subject>Resonant frequency</subject><subject>Sensors</subject><subject>Silicon</subject><issn>1930-0395</issn><issn>2168-9229</issn><isbn>9781457717666</isbn><isbn>1457717662</isbn><isbn>9781457717659</isbn><isbn>9781457717673</isbn><isbn>1457717654</isbn><isbn>1457717670</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKw0AUhscbGGufoJu8wMQ5k7kuJVQtFF2k-3IyOcGRXEomXfj2Cnbj6v_gg2_xM7YBUQAI_7Sr6u17XUgBsjAKoHTyiq29daC0tWCN9tcsk2Ac91L6m3_OmFuWgS8FF6XX9-whpS8hpNDSZczV1Hc8ndOCcaQ2H2KYp4HCJ44xYJ_PlKYRxyU__VI6z5QnGtM0p0d212GfaH3ZFTu8bA_VG99_vO6q5z2PXixcteQdWhswIDZWio5spyy1AhU6h0q1jQdBKjjjdNkpUq1FMESmCQp0uWKbv2wkouNpjgPO38fLB-UPm-1NhA</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Xiaobo Guo</creator><creator>Rahafrooz, A.</creator><creator>Yun-bo Yi</creator><creator>Pourkamali, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Self-sustained micromechanical resonant pressure sensors</title><author>Xiaobo Guo ; Rahafrooz, A. ; Yun-bo Yi ; Pourkamali, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4de98a77cacaab720fe7f47ed0a4a88a44db910e4c86853f4e4d7a16ee6bc4153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actuators</topic><topic>Damping</topic><topic>Frequency measurement</topic><topic>Oscillators</topic><topic>Resonant frequency</topic><topic>Sensors</topic><topic>Silicon</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaobo Guo</creatorcontrib><creatorcontrib>Rahafrooz, A.</creatorcontrib><creatorcontrib>Yun-bo Yi</creatorcontrib><creatorcontrib>Pourkamali, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaobo Guo</au><au>Rahafrooz, A.</au><au>Yun-bo Yi</au><au>Pourkamali, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Self-sustained micromechanical resonant pressure sensors</atitle><btitle>2012 IEEE Sensors</btitle><stitle>ICSENS</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1930-0395</issn><eissn>2168-9229</eissn><isbn>9781457717666</isbn><isbn>1457717662</isbn><eisbn>9781457717659</eisbn><eisbn>9781457717673</eisbn><eisbn>1457717654</eisbn><eisbn>1457717670</eisbn><abstract>This work presents a new gas pressure sensing technique based on self-sustained oscillations in micromechanical thermal-piezoresistive resonators. Electrothermal force generation in such structures can be coupled to the structural stress through the piezoresistive effect. This could lead to spontaneous mechanical vibrations in the resonant structures upon application of a large enough DC bias current. It has been demonstrated via measurements that resonant frequency of such oscillators is sharply dependent on the surrounding gas pressure. For a 3.46MHz thermal piezoresistive oscillator, frequency shift of -2300ppm was observed by changing the surrounding air pressure from 84kPa to 43kPa. In addition, the same structure was also operated in a forced excitation mode as a resonator actuated by a combination of DC and AC currents. Interestingly, the frequency shift in the self-sustained oscillation mode is far more significant than the frequency shift in forced resonance mode and is opposite in direction. In order to explain this observation, a mathematical model has been developed for the thermal-piezoresistive oscillators. The final solution from this model indicates that the dynamic stiffness of the spontaneously vibrating structures decreases as the value of the damping coefficient is reduced at lower gas pressures.</abstract><pub>IEEE</pub><doi>10.1109/ICSENS.2012.6411382</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1930-0395
ispartof 2012 IEEE Sensors, 2012, p.1-5
issn 1930-0395
2168-9229
language eng
recordid cdi_ieee_primary_6411382
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Actuators
Damping
Frequency measurement
Oscillators
Resonant frequency
Sensors
Silicon
title Self-sustained micromechanical resonant pressure sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Self-sustained%20micromechanical%20resonant%20pressure%20sensors&rft.btitle=2012%20IEEE%20Sensors&rft.au=Xiaobo%20Guo&rft.date=2012-10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1930-0395&rft.eissn=2168-9229&rft.isbn=9781457717666&rft.isbn_list=1457717662&rft_id=info:doi/10.1109/ICSENS.2012.6411382&rft_dat=%3Cieee_6IE%3E6411382%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457717659&rft.eisbn_list=9781457717673&rft.eisbn_list=1457717654&rft.eisbn_list=1457717670&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6411382&rfr_iscdi=true