A novel content-adaptive image compression system
This paper presents a novel content-adaptive image compression system. Utilizing a pattern-driven model, we explore the synergy between content-based analysis and compression. For a given image, disparate low-level visual patterns are automatically separated, modeled, and encoded using compact and &...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Hai Wei Yadegar, J. Salemann, L. De La Cruz, J. Gonzalez, H. J. |
description | This paper presents a novel content-adaptive image compression system. Utilizing a pattern-driven model, we explore the synergy between content-based analysis and compression. For a given image, disparate low-level visual patterns are automatically separated, modeled, and encoded using compact and "customized" features and parameters. The feasibility and efficiency of the proposed system were corroborated by quantitative experiments and comparisons. Since different patterns are separated and modeled explicitly during the compression, our method holds potentials for providing better support for compressed-domain analysis. |
doi_str_mv | 10.1109/VCIP.2012.6410807 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6410807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6410807</ieee_id><sourcerecordid>6410807</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7c56328e34e79c6a1c7d63ac4ac6d4bf6835caeab2c793b32d51861f35a7a2973</originalsourceid><addsrcrecordid>eNo1j0tLw0AUhUdEUGt-gLjJH0icO687WZbgo1DQhbotN5MbiTQPMkOh_96CdXU43-LwHSHuQZYAsnr8qjfvpZKgSmdAeokXIqvQg3GojZEOL8Xtf7HqWmQx_kgpAZTR6G8ErPNxOvA-D9OYeEwFtTSn_sB5P9A3n_AwLxxjP415PMbEw5246mgfOTvnSnw-P33Ur8X27WVTr7dFD2hTgcE6rTxrw1gFRxCwdZqCoeBa03TOaxuIqVEBK91o1VrwDjptCUlVqFfi4W-3Z-bdvJx8luPu_FL_AvlJRT8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel content-adaptive image compression system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hai Wei ; Yadegar, J. ; Salemann, L. ; De La Cruz, J. ; Gonzalez, H. J.</creator><creatorcontrib>Hai Wei ; Yadegar, J. ; Salemann, L. ; De La Cruz, J. ; Gonzalez, H. J.</creatorcontrib><description>This paper presents a novel content-adaptive image compression system. Utilizing a pattern-driven model, we explore the synergy between content-based analysis and compression. For a given image, disparate low-level visual patterns are automatically separated, modeled, and encoded using compact and "customized" features and parameters. The feasibility and efficiency of the proposed system were corroborated by quantitative experiments and comparisons. Since different patterns are separated and modeled explicitly during the compression, our method holds potentials for providing better support for compressed-domain analysis.</description><identifier>ISBN: 1467344052</identifier><identifier>ISBN: 9781467344050</identifier><identifier>EISBN: 9781467344067</identifier><identifier>EISBN: 1467344079</identifier><identifier>EISBN: 1467344060</identifier><identifier>EISBN: 9781467344074</identifier><identifier>DOI: 10.1109/VCIP.2012.6410807</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification ; compressed-domain analysis ; Image coding ; Image compression ; Image edge detection ; Maximum likelihood detection ; Nonlinear filters ; pattern-driven model ; PSNR ; Tiles ; Transform coding</subject><ispartof>2012 Visual Communications and Image Processing, 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6410807$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6410807$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hai Wei</creatorcontrib><creatorcontrib>Yadegar, J.</creatorcontrib><creatorcontrib>Salemann, L.</creatorcontrib><creatorcontrib>De La Cruz, J.</creatorcontrib><creatorcontrib>Gonzalez, H. J.</creatorcontrib><title>A novel content-adaptive image compression system</title><title>2012 Visual Communications and Image Processing</title><addtitle>VCIP</addtitle><description>This paper presents a novel content-adaptive image compression system. Utilizing a pattern-driven model, we explore the synergy between content-based analysis and compression. For a given image, disparate low-level visual patterns are automatically separated, modeled, and encoded using compact and "customized" features and parameters. The feasibility and efficiency of the proposed system were corroborated by quantitative experiments and comparisons. Since different patterns are separated and modeled explicitly during the compression, our method holds potentials for providing better support for compressed-domain analysis.</description><subject>classification</subject><subject>compressed-domain analysis</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image edge detection</subject><subject>Maximum likelihood detection</subject><subject>Nonlinear filters</subject><subject>pattern-driven model</subject><subject>PSNR</subject><subject>Tiles</subject><subject>Transform coding</subject><isbn>1467344052</isbn><isbn>9781467344050</isbn><isbn>9781467344067</isbn><isbn>1467344079</isbn><isbn>1467344060</isbn><isbn>9781467344074</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0tLw0AUhUdEUGt-gLjJH0icO687WZbgo1DQhbotN5MbiTQPMkOh_96CdXU43-LwHSHuQZYAsnr8qjfvpZKgSmdAeokXIqvQg3GojZEOL8Xtf7HqWmQx_kgpAZTR6G8ErPNxOvA-D9OYeEwFtTSn_sB5P9A3n_AwLxxjP415PMbEw5246mgfOTvnSnw-P33Ur8X27WVTr7dFD2hTgcE6rTxrw1gFRxCwdZqCoeBa03TOaxuIqVEBK91o1VrwDjptCUlVqFfi4W-3Z-bdvJx8luPu_FL_AvlJRT8</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Hai Wei</creator><creator>Yadegar, J.</creator><creator>Salemann, L.</creator><creator>De La Cruz, J.</creator><creator>Gonzalez, H. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>A novel content-adaptive image compression system</title><author>Hai Wei ; Yadegar, J. ; Salemann, L. ; De La Cruz, J. ; Gonzalez, H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7c56328e34e79c6a1c7d63ac4ac6d4bf6835caeab2c793b32d51861f35a7a2973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>classification</topic><topic>compressed-domain analysis</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image edge detection</topic><topic>Maximum likelihood detection</topic><topic>Nonlinear filters</topic><topic>pattern-driven model</topic><topic>PSNR</topic><topic>Tiles</topic><topic>Transform coding</topic><toplevel>online_resources</toplevel><creatorcontrib>Hai Wei</creatorcontrib><creatorcontrib>Yadegar, J.</creatorcontrib><creatorcontrib>Salemann, L.</creatorcontrib><creatorcontrib>De La Cruz, J.</creatorcontrib><creatorcontrib>Gonzalez, H. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hai Wei</au><au>Yadegar, J.</au><au>Salemann, L.</au><au>De La Cruz, J.</au><au>Gonzalez, H. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel content-adaptive image compression system</atitle><btitle>2012 Visual Communications and Image Processing</btitle><stitle>VCIP</stitle><date>2012-11</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1467344052</isbn><isbn>9781467344050</isbn><eisbn>9781467344067</eisbn><eisbn>1467344079</eisbn><eisbn>1467344060</eisbn><eisbn>9781467344074</eisbn><abstract>This paper presents a novel content-adaptive image compression system. Utilizing a pattern-driven model, we explore the synergy between content-based analysis and compression. For a given image, disparate low-level visual patterns are automatically separated, modeled, and encoded using compact and "customized" features and parameters. The feasibility and efficiency of the proposed system were corroborated by quantitative experiments and comparisons. Since different patterns are separated and modeled explicitly during the compression, our method holds potentials for providing better support for compressed-domain analysis.</abstract><pub>IEEE</pub><doi>10.1109/VCIP.2012.6410807</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467344052 |
ispartof | 2012 Visual Communications and Image Processing, 2012, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6410807 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | classification compressed-domain analysis Image coding Image compression Image edge detection Maximum likelihood detection Nonlinear filters pattern-driven model PSNR Tiles Transform coding |
title | A novel content-adaptive image compression system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20content-adaptive%20image%20compression%20system&rft.btitle=2012%20Visual%20Communications%20and%20Image%20Processing&rft.au=Hai%20Wei&rft.date=2012-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1467344052&rft.isbn_list=9781467344050&rft_id=info:doi/10.1109/VCIP.2012.6410807&rft_dat=%3Cieee_6IE%3E6410807%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467344067&rft.eisbn_list=1467344079&rft.eisbn_list=1467344060&rft.eisbn_list=9781467344074&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6410807&rfr_iscdi=true |