A novel content-adaptive image compression system

This paper presents a novel content-adaptive image compression system. Utilizing a pattern-driven model, we explore the synergy between content-based analysis and compression. For a given image, disparate low-level visual patterns are automatically separated, modeled, and encoded using compact and &...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hai Wei, Yadegar, J., Salemann, L., De La Cruz, J., Gonzalez, H. J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Hai Wei
Yadegar, J.
Salemann, L.
De La Cruz, J.
Gonzalez, H. J.
description This paper presents a novel content-adaptive image compression system. Utilizing a pattern-driven model, we explore the synergy between content-based analysis and compression. For a given image, disparate low-level visual patterns are automatically separated, modeled, and encoded using compact and "customized" features and parameters. The feasibility and efficiency of the proposed system were corroborated by quantitative experiments and comparisons. Since different patterns are separated and modeled explicitly during the compression, our method holds potentials for providing better support for compressed-domain analysis.
doi_str_mv 10.1109/VCIP.2012.6410807
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6410807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6410807</ieee_id><sourcerecordid>6410807</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7c56328e34e79c6a1c7d63ac4ac6d4bf6835caeab2c793b32d51861f35a7a2973</originalsourceid><addsrcrecordid>eNo1j0tLw0AUhUdEUGt-gLjJH0icO687WZbgo1DQhbotN5MbiTQPMkOh_96CdXU43-LwHSHuQZYAsnr8qjfvpZKgSmdAeokXIqvQg3GojZEOL8Xtf7HqWmQx_kgpAZTR6G8ErPNxOvA-D9OYeEwFtTSn_sB5P9A3n_AwLxxjP415PMbEw5246mgfOTvnSnw-P33Ur8X27WVTr7dFD2hTgcE6rTxrw1gFRxCwdZqCoeBa03TOaxuIqVEBK91o1VrwDjptCUlVqFfi4W-3Z-bdvJx8luPu_FL_AvlJRT8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel content-adaptive image compression system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hai Wei ; Yadegar, J. ; Salemann, L. ; De La Cruz, J. ; Gonzalez, H. J.</creator><creatorcontrib>Hai Wei ; Yadegar, J. ; Salemann, L. ; De La Cruz, J. ; Gonzalez, H. J.</creatorcontrib><description>This paper presents a novel content-adaptive image compression system. Utilizing a pattern-driven model, we explore the synergy between content-based analysis and compression. For a given image, disparate low-level visual patterns are automatically separated, modeled, and encoded using compact and "customized" features and parameters. The feasibility and efficiency of the proposed system were corroborated by quantitative experiments and comparisons. Since different patterns are separated and modeled explicitly during the compression, our method holds potentials for providing better support for compressed-domain analysis.</description><identifier>ISBN: 1467344052</identifier><identifier>ISBN: 9781467344050</identifier><identifier>EISBN: 9781467344067</identifier><identifier>EISBN: 1467344079</identifier><identifier>EISBN: 1467344060</identifier><identifier>EISBN: 9781467344074</identifier><identifier>DOI: 10.1109/VCIP.2012.6410807</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification ; compressed-domain analysis ; Image coding ; Image compression ; Image edge detection ; Maximum likelihood detection ; Nonlinear filters ; pattern-driven model ; PSNR ; Tiles ; Transform coding</subject><ispartof>2012 Visual Communications and Image Processing, 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6410807$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6410807$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hai Wei</creatorcontrib><creatorcontrib>Yadegar, J.</creatorcontrib><creatorcontrib>Salemann, L.</creatorcontrib><creatorcontrib>De La Cruz, J.</creatorcontrib><creatorcontrib>Gonzalez, H. J.</creatorcontrib><title>A novel content-adaptive image compression system</title><title>2012 Visual Communications and Image Processing</title><addtitle>VCIP</addtitle><description>This paper presents a novel content-adaptive image compression system. Utilizing a pattern-driven model, we explore the synergy between content-based analysis and compression. For a given image, disparate low-level visual patterns are automatically separated, modeled, and encoded using compact and "customized" features and parameters. The feasibility and efficiency of the proposed system were corroborated by quantitative experiments and comparisons. Since different patterns are separated and modeled explicitly during the compression, our method holds potentials for providing better support for compressed-domain analysis.</description><subject>classification</subject><subject>compressed-domain analysis</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image edge detection</subject><subject>Maximum likelihood detection</subject><subject>Nonlinear filters</subject><subject>pattern-driven model</subject><subject>PSNR</subject><subject>Tiles</subject><subject>Transform coding</subject><isbn>1467344052</isbn><isbn>9781467344050</isbn><isbn>9781467344067</isbn><isbn>1467344079</isbn><isbn>1467344060</isbn><isbn>9781467344074</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0tLw0AUhUdEUGt-gLjJH0icO687WZbgo1DQhbotN5MbiTQPMkOh_96CdXU43-LwHSHuQZYAsnr8qjfvpZKgSmdAeokXIqvQg3GojZEOL8Xtf7HqWmQx_kgpAZTR6G8ErPNxOvA-D9OYeEwFtTSn_sB5P9A3n_AwLxxjP415PMbEw5246mgfOTvnSnw-P33Ur8X27WVTr7dFD2hTgcE6rTxrw1gFRxCwdZqCoeBa03TOaxuIqVEBK91o1VrwDjptCUlVqFfi4W-3Z-bdvJx8luPu_FL_AvlJRT8</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Hai Wei</creator><creator>Yadegar, J.</creator><creator>Salemann, L.</creator><creator>De La Cruz, J.</creator><creator>Gonzalez, H. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>A novel content-adaptive image compression system</title><author>Hai Wei ; Yadegar, J. ; Salemann, L. ; De La Cruz, J. ; Gonzalez, H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7c56328e34e79c6a1c7d63ac4ac6d4bf6835caeab2c793b32d51861f35a7a2973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>classification</topic><topic>compressed-domain analysis</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image edge detection</topic><topic>Maximum likelihood detection</topic><topic>Nonlinear filters</topic><topic>pattern-driven model</topic><topic>PSNR</topic><topic>Tiles</topic><topic>Transform coding</topic><toplevel>online_resources</toplevel><creatorcontrib>Hai Wei</creatorcontrib><creatorcontrib>Yadegar, J.</creatorcontrib><creatorcontrib>Salemann, L.</creatorcontrib><creatorcontrib>De La Cruz, J.</creatorcontrib><creatorcontrib>Gonzalez, H. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hai Wei</au><au>Yadegar, J.</au><au>Salemann, L.</au><au>De La Cruz, J.</au><au>Gonzalez, H. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel content-adaptive image compression system</atitle><btitle>2012 Visual Communications and Image Processing</btitle><stitle>VCIP</stitle><date>2012-11</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1467344052</isbn><isbn>9781467344050</isbn><eisbn>9781467344067</eisbn><eisbn>1467344079</eisbn><eisbn>1467344060</eisbn><eisbn>9781467344074</eisbn><abstract>This paper presents a novel content-adaptive image compression system. Utilizing a pattern-driven model, we explore the synergy between content-based analysis and compression. For a given image, disparate low-level visual patterns are automatically separated, modeled, and encoded using compact and "customized" features and parameters. The feasibility and efficiency of the proposed system were corroborated by quantitative experiments and comparisons. Since different patterns are separated and modeled explicitly during the compression, our method holds potentials for providing better support for compressed-domain analysis.</abstract><pub>IEEE</pub><doi>10.1109/VCIP.2012.6410807</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467344052
ispartof 2012 Visual Communications and Image Processing, 2012, p.1-6
issn
language eng
recordid cdi_ieee_primary_6410807
source IEEE Electronic Library (IEL) Conference Proceedings
subjects classification
compressed-domain analysis
Image coding
Image compression
Image edge detection
Maximum likelihood detection
Nonlinear filters
pattern-driven model
PSNR
Tiles
Transform coding
title A novel content-adaptive image compression system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20content-adaptive%20image%20compression%20system&rft.btitle=2012%20Visual%20Communications%20and%20Image%20Processing&rft.au=Hai%20Wei&rft.date=2012-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1467344052&rft.isbn_list=9781467344050&rft_id=info:doi/10.1109/VCIP.2012.6410807&rft_dat=%3Cieee_6IE%3E6410807%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467344067&rft.eisbn_list=1467344079&rft.eisbn_list=1467344060&rft.eisbn_list=9781467344074&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6410807&rfr_iscdi=true