Neuromorphic Neural Network Parallelization on CUDA Compatible GPU for EEG Signal Classification

The purpose of the project described in this paper is to implement a Spiking Neural Network, on a CUDA driven Nvidia video-card, which can learn predefined samples on images presented as input data. With experimental EEG signals pre-processed using the Wavelet transform into an image set, it can lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bako, Laszlo, Kolcsar, Arpad-Zoltan, Brassai, Sandor-Tihamer, Marton, Laszlo-Ferenc, Losonczi, Lajos
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364
container_issue
container_start_page 359
container_title
container_volume
creator Bako, Laszlo
Kolcsar, Arpad-Zoltan
Brassai, Sandor-Tihamer
Marton, Laszlo-Ferenc
Losonczi, Lajos
description The purpose of the project described in this paper is to implement a Spiking Neural Network, on a CUDA driven Nvidia video-card, which can learn predefined samples on images presented as input data. With experimental EEG signals pre-processed using the Wavelet transform into an image set, it can learn to classify inputs into a certain category by applying a proprietary algorithm, presented in the paper. The implementation of the spiking neural network is done in CUDA C, with the use of the card's inner GPU. The GPU has the functionality to parallelize multiple tasks, which can enable the neural network to do fast calculations even with large amounts of data. The application can be controlled with a GUI, in which the user can modify the base parameters of the system, make tests, or it can train the system. Performance results are given in terms of computation speed and classification accuracy.
doi_str_mv 10.1109/EMS.2012.87
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6410177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6410177</ieee_id><sourcerecordid>6410177</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-c57d54790a38678ff56e8c145ba1324150c5191cc1c273ea35fbba12952a19953</originalsourceid><addsrcrecordid>eNotj0tPwzAQhI0QElB64sjFfyDB69faxyqEgFSgUum5OMYBQ9pUSVAFvx7zkFb6NDM7Ky0h58ByAGYvy7tlzhnw3OABOWWorZKWa3NIphYNSI1CWkR-TKbD8MYYA9RaojkhT_fho-82Xb97jZ7-CNcmjPuuf6cLl1Qb2vjlxthtaZpidTWjRbfZJaduA60WK9p0PS3Lii7jyza1i9YNQ2yi_y2dkaPGtUOY_nNCVtflY3GTzR-q22I2zyKXMGZe4bOSaJkTRqNpGqWD8SBV7UCkDcW8Agveg-coghOqqVPEreIOrFViQi7-7sYQwnrXx43rP9daQvoVxTdV8FNS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neuromorphic Neural Network Parallelization on CUDA Compatible GPU for EEG Signal Classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bako, Laszlo ; Kolcsar, Arpad-Zoltan ; Brassai, Sandor-Tihamer ; Marton, Laszlo-Ferenc ; Losonczi, Lajos</creator><creatorcontrib>Bako, Laszlo ; Kolcsar, Arpad-Zoltan ; Brassai, Sandor-Tihamer ; Marton, Laszlo-Ferenc ; Losonczi, Lajos</creatorcontrib><description>The purpose of the project described in this paper is to implement a Spiking Neural Network, on a CUDA driven Nvidia video-card, which can learn predefined samples on images presented as input data. With experimental EEG signals pre-processed using the Wavelet transform into an image set, it can learn to classify inputs into a certain category by applying a proprietary algorithm, presented in the paper. The implementation of the spiking neural network is done in CUDA C, with the use of the card's inner GPU. The GPU has the functionality to parallelize multiple tasks, which can enable the neural network to do fast calculations even with large amounts of data. The application can be controlled with a GUI, in which the user can modify the base parameters of the system, make tests, or it can train the system. Performance results are given in terms of computation speed and classification accuracy.</description><identifier>ISBN: 9781467349772</identifier><identifier>ISBN: 1467349771</identifier><identifier>EISBN: 0769549268</identifier><identifier>EISBN: 9780769549262</identifier><identifier>DOI: 10.1109/EMS.2012.87</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological neural networks ; classification ; CUDA ; EEG ; Electroencephalography ; GPU ; Graphics processing units ; Neurons ; parallelization ; Spiking neural network ; Training ; Wavelet transforms</subject><ispartof>2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation, 2012, p.359-364</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6410177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6410177$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bako, Laszlo</creatorcontrib><creatorcontrib>Kolcsar, Arpad-Zoltan</creatorcontrib><creatorcontrib>Brassai, Sandor-Tihamer</creatorcontrib><creatorcontrib>Marton, Laszlo-Ferenc</creatorcontrib><creatorcontrib>Losonczi, Lajos</creatorcontrib><title>Neuromorphic Neural Network Parallelization on CUDA Compatible GPU for EEG Signal Classification</title><title>2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation</title><addtitle>ems</addtitle><description>The purpose of the project described in this paper is to implement a Spiking Neural Network, on a CUDA driven Nvidia video-card, which can learn predefined samples on images presented as input data. With experimental EEG signals pre-processed using the Wavelet transform into an image set, it can learn to classify inputs into a certain category by applying a proprietary algorithm, presented in the paper. The implementation of the spiking neural network is done in CUDA C, with the use of the card's inner GPU. The GPU has the functionality to parallelize multiple tasks, which can enable the neural network to do fast calculations even with large amounts of data. The application can be controlled with a GUI, in which the user can modify the base parameters of the system, make tests, or it can train the system. Performance results are given in terms of computation speed and classification accuracy.</description><subject>Biological neural networks</subject><subject>classification</subject><subject>CUDA</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>GPU</subject><subject>Graphics processing units</subject><subject>Neurons</subject><subject>parallelization</subject><subject>Spiking neural network</subject><subject>Training</subject><subject>Wavelet transforms</subject><isbn>9781467349772</isbn><isbn>1467349771</isbn><isbn>0769549268</isbn><isbn>9780769549262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tPwzAQhI0QElB64sjFfyDB69faxyqEgFSgUum5OMYBQ9pUSVAFvx7zkFb6NDM7Ky0h58ByAGYvy7tlzhnw3OABOWWorZKWa3NIphYNSI1CWkR-TKbD8MYYA9RaojkhT_fho-82Xb97jZ7-CNcmjPuuf6cLl1Qb2vjlxthtaZpidTWjRbfZJaduA60WK9p0PS3Lii7jyza1i9YNQ2yi_y2dkaPGtUOY_nNCVtflY3GTzR-q22I2zyKXMGZe4bOSaJkTRqNpGqWD8SBV7UCkDcW8Agveg-coghOqqVPEreIOrFViQi7-7sYQwnrXx43rP9daQvoVxTdV8FNS</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Bako, Laszlo</creator><creator>Kolcsar, Arpad-Zoltan</creator><creator>Brassai, Sandor-Tihamer</creator><creator>Marton, Laszlo-Ferenc</creator><creator>Losonczi, Lajos</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Neuromorphic Neural Network Parallelization on CUDA Compatible GPU for EEG Signal Classification</title><author>Bako, Laszlo ; Kolcsar, Arpad-Zoltan ; Brassai, Sandor-Tihamer ; Marton, Laszlo-Ferenc ; Losonczi, Lajos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-c57d54790a38678ff56e8c145ba1324150c5191cc1c273ea35fbba12952a19953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological neural networks</topic><topic>classification</topic><topic>CUDA</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>GPU</topic><topic>Graphics processing units</topic><topic>Neurons</topic><topic>parallelization</topic><topic>Spiking neural network</topic><topic>Training</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Bako, Laszlo</creatorcontrib><creatorcontrib>Kolcsar, Arpad-Zoltan</creatorcontrib><creatorcontrib>Brassai, Sandor-Tihamer</creatorcontrib><creatorcontrib>Marton, Laszlo-Ferenc</creatorcontrib><creatorcontrib>Losonczi, Lajos</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bako, Laszlo</au><au>Kolcsar, Arpad-Zoltan</au><au>Brassai, Sandor-Tihamer</au><au>Marton, Laszlo-Ferenc</au><au>Losonczi, Lajos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neuromorphic Neural Network Parallelization on CUDA Compatible GPU for EEG Signal Classification</atitle><btitle>2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation</btitle><stitle>ems</stitle><date>2012-11</date><risdate>2012</risdate><spage>359</spage><epage>364</epage><pages>359-364</pages><isbn>9781467349772</isbn><isbn>1467349771</isbn><eisbn>0769549268</eisbn><eisbn>9780769549262</eisbn><coden>IEEPAD</coden><abstract>The purpose of the project described in this paper is to implement a Spiking Neural Network, on a CUDA driven Nvidia video-card, which can learn predefined samples on images presented as input data. With experimental EEG signals pre-processed using the Wavelet transform into an image set, it can learn to classify inputs into a certain category by applying a proprietary algorithm, presented in the paper. The implementation of the spiking neural network is done in CUDA C, with the use of the card's inner GPU. The GPU has the functionality to parallelize multiple tasks, which can enable the neural network to do fast calculations even with large amounts of data. The application can be controlled with a GUI, in which the user can modify the base parameters of the system, make tests, or it can train the system. Performance results are given in terms of computation speed and classification accuracy.</abstract><pub>IEEE</pub><doi>10.1109/EMS.2012.87</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467349772
ispartof 2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation, 2012, p.359-364
issn
language eng
recordid cdi_ieee_primary_6410177
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological neural networks
classification
CUDA
EEG
Electroencephalography
GPU
Graphics processing units
Neurons
parallelization
Spiking neural network
Training
Wavelet transforms
title Neuromorphic Neural Network Parallelization on CUDA Compatible GPU for EEG Signal Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neuromorphic%20Neural%20Network%20Parallelization%20on%20CUDA%20Compatible%20GPU%20for%20EEG%20Signal%20Classification&rft.btitle=2012%20Sixth%20UKSim/AMSS%20European%20Symposium%20on%20Computer%20Modeling%20and%20Simulation&rft.au=Bako,%20Laszlo&rft.date=2012-11&rft.spage=359&rft.epage=364&rft.pages=359-364&rft.isbn=9781467349772&rft.isbn_list=1467349771&rft.coden=IEEPAD&rft_id=info:doi/10.1109/EMS.2012.87&rft_dat=%3Cieee_6IE%3E6410177%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769549268&rft.eisbn_list=9780769549262&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6410177&rfr_iscdi=true