Intelligence Improvement of a "Prosumer" Node through the Predictive Concept

This paper describes a new predictive algorithm that can be used to improve the intelligence of a prosumer node. Prosumers - which means the entities that are consumers and producers at the same time - play an important, active role within the context of smart grids. On the other hand, a smart grid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Muzi, F., De Lorenzo, M. G., De Gasperis, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue
container_start_page 311
container_title
container_volume
creator Muzi, F.
De Lorenzo, M. G.
De Gasperis, G.
description This paper describes a new predictive algorithm that can be used to improve the intelligence of a prosumer node. Prosumers - which means the entities that are consumers and producers at the same time - play an important, active role within the context of smart grids. On the other hand, a smart grid is truly "smart" if all its nodes are smart, including prosumer nodes. The algorithm is based on predictive functions that allow to perform optimized choices in advance, on the basis of information acquired from the field, from the examined building and from on-line data banks. The main functions performed by the algorithm are: the creation of an internal data bank, a learning procedure, and the decisions to be activated. These functions are also continuously upgraded. The main results supplied by the algorithm, at each established time interval (normally, a quarter of an hour), consist in the definition of the optimal amount of energy to be consumed, stored and locally generated. In this way a substantial increase in efficiency is reached with immediate, significant economic returns.
doi_str_mv 10.1109/EMS.2012.14
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6410170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6410170</ieee_id><sourcerecordid>6410170</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4fc4fa2ed6d745661d493ce5f77d3cb7165140dc27a3ac2c23adedcc441a29dd3</originalsourceid><addsrcrecordid>eNotj0FLwzAYQCMiqHMnj17C7qv5kq_5mqOMqYOpA_U8YvJ1q7RrSbuB_96Cnt7pPXhC3ILKAJS7X768Z1qBzgDPxLUi63J02hbnYuqoALRk0BHpSzHt-2-lFJC1SMWVWK8OA9d1teNDYLlqutSeuOHDINtSejnbpLY_Npxm8rWNLId9ao-7_UiWm8SxCkN1YrloR7sbbsRF6euep_-ciM_H5cfieb5-e1otHtbzCigf5lgGLL3maCNhbi1EdCZwXhJFE74IbA6oYtDkjQ86aOMjxxAQwWsXo5mIu79uxczbLlWNTz9bizB-KfMLioZN_g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intelligence Improvement of a "Prosumer" Node through the Predictive Concept</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Muzi, F. ; De Lorenzo, M. G. ; De Gasperis, G.</creator><creatorcontrib>Muzi, F. ; De Lorenzo, M. G. ; De Gasperis, G.</creatorcontrib><description>This paper describes a new predictive algorithm that can be used to improve the intelligence of a prosumer node. Prosumers - which means the entities that are consumers and producers at the same time - play an important, active role within the context of smart grids. On the other hand, a smart grid is truly "smart" if all its nodes are smart, including prosumer nodes. The algorithm is based on predictive functions that allow to perform optimized choices in advance, on the basis of information acquired from the field, from the examined building and from on-line data banks. The main functions performed by the algorithm are: the creation of an internal data bank, a learning procedure, and the decisions to be activated. These functions are also continuously upgraded. The main results supplied by the algorithm, at each established time interval (normally, a quarter of an hour), consist in the definition of the optimal amount of energy to be consumed, stored and locally generated. In this way a substantial increase in efficiency is reached with immediate, significant economic returns.</description><identifier>ISBN: 9781467349772</identifier><identifier>ISBN: 1467349771</identifier><identifier>EISBN: 0769549268</identifier><identifier>EISBN: 9780769549262</identifier><identifier>DOI: 10.1109/EMS.2012.14</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological system modeling ; Buildings ; Cooling ; Distributed power generation ; Load modeling ; Load modeling estimation and forecast ; Power distribution ; Prediction algorithms ; Smart grids</subject><ispartof>2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation, 2012, p.311-316</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6410170$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6410170$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Muzi, F.</creatorcontrib><creatorcontrib>De Lorenzo, M. G.</creatorcontrib><creatorcontrib>De Gasperis, G.</creatorcontrib><title>Intelligence Improvement of a "Prosumer" Node through the Predictive Concept</title><title>2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation</title><addtitle>ems</addtitle><description>This paper describes a new predictive algorithm that can be used to improve the intelligence of a prosumer node. Prosumers - which means the entities that are consumers and producers at the same time - play an important, active role within the context of smart grids. On the other hand, a smart grid is truly "smart" if all its nodes are smart, including prosumer nodes. The algorithm is based on predictive functions that allow to perform optimized choices in advance, on the basis of information acquired from the field, from the examined building and from on-line data banks. The main functions performed by the algorithm are: the creation of an internal data bank, a learning procedure, and the decisions to be activated. These functions are also continuously upgraded. The main results supplied by the algorithm, at each established time interval (normally, a quarter of an hour), consist in the definition of the optimal amount of energy to be consumed, stored and locally generated. In this way a substantial increase in efficiency is reached with immediate, significant economic returns.</description><subject>Algorithm design and analysis</subject><subject>Biological system modeling</subject><subject>Buildings</subject><subject>Cooling</subject><subject>Distributed power generation</subject><subject>Load modeling</subject><subject>Load modeling estimation and forecast</subject><subject>Power distribution</subject><subject>Prediction algorithms</subject><subject>Smart grids</subject><isbn>9781467349772</isbn><isbn>1467349771</isbn><isbn>0769549268</isbn><isbn>9780769549262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLwzAYQCMiqHMnj17C7qv5kq_5mqOMqYOpA_U8YvJ1q7RrSbuB_96Cnt7pPXhC3ILKAJS7X768Z1qBzgDPxLUi63J02hbnYuqoALRk0BHpSzHt-2-lFJC1SMWVWK8OA9d1teNDYLlqutSeuOHDINtSejnbpLY_Npxm8rWNLId9ao-7_UiWm8SxCkN1YrloR7sbbsRF6euep_-ciM_H5cfieb5-e1otHtbzCigf5lgGLL3maCNhbi1EdCZwXhJFE74IbA6oYtDkjQ86aOMjxxAQwWsXo5mIu79uxczbLlWNTz9bizB-KfMLioZN_g</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Muzi, F.</creator><creator>De Lorenzo, M. G.</creator><creator>De Gasperis, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Intelligence Improvement of a "Prosumer" Node through the Predictive Concept</title><author>Muzi, F. ; De Lorenzo, M. G. ; De Gasperis, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4fc4fa2ed6d745661d493ce5f77d3cb7165140dc27a3ac2c23adedcc441a29dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Biological system modeling</topic><topic>Buildings</topic><topic>Cooling</topic><topic>Distributed power generation</topic><topic>Load modeling</topic><topic>Load modeling estimation and forecast</topic><topic>Power distribution</topic><topic>Prediction algorithms</topic><topic>Smart grids</topic><toplevel>online_resources</toplevel><creatorcontrib>Muzi, F.</creatorcontrib><creatorcontrib>De Lorenzo, M. G.</creatorcontrib><creatorcontrib>De Gasperis, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Muzi, F.</au><au>De Lorenzo, M. G.</au><au>De Gasperis, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intelligence Improvement of a "Prosumer" Node through the Predictive Concept</atitle><btitle>2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation</btitle><stitle>ems</stitle><date>2012-11</date><risdate>2012</risdate><spage>311</spage><epage>316</epage><pages>311-316</pages><isbn>9781467349772</isbn><isbn>1467349771</isbn><eisbn>0769549268</eisbn><eisbn>9780769549262</eisbn><coden>IEEPAD</coden><abstract>This paper describes a new predictive algorithm that can be used to improve the intelligence of a prosumer node. Prosumers - which means the entities that are consumers and producers at the same time - play an important, active role within the context of smart grids. On the other hand, a smart grid is truly "smart" if all its nodes are smart, including prosumer nodes. The algorithm is based on predictive functions that allow to perform optimized choices in advance, on the basis of information acquired from the field, from the examined building and from on-line data banks. The main functions performed by the algorithm are: the creation of an internal data bank, a learning procedure, and the decisions to be activated. These functions are also continuously upgraded. The main results supplied by the algorithm, at each established time interval (normally, a quarter of an hour), consist in the definition of the optimal amount of energy to be consumed, stored and locally generated. In this way a substantial increase in efficiency is reached with immediate, significant economic returns.</abstract><pub>IEEE</pub><doi>10.1109/EMS.2012.14</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467349772
ispartof 2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation, 2012, p.311-316
issn
language eng
recordid cdi_ieee_primary_6410170
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Biological system modeling
Buildings
Cooling
Distributed power generation
Load modeling
Load modeling estimation and forecast
Power distribution
Prediction algorithms
Smart grids
title Intelligence Improvement of a "Prosumer" Node through the Predictive Concept
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intelligence%20Improvement%20of%20a%20%22Prosumer%22%20Node%20through%20the%20Predictive%20Concept&rft.btitle=2012%20Sixth%20UKSim/AMSS%20European%20Symposium%20on%20Computer%20Modeling%20and%20Simulation&rft.au=Muzi,%20F.&rft.date=2012-11&rft.spage=311&rft.epage=316&rft.pages=311-316&rft.isbn=9781467349772&rft.isbn_list=1467349771&rft.coden=IEEPAD&rft_id=info:doi/10.1109/EMS.2012.14&rft_dat=%3Cieee_6IE%3E6410170%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769549268&rft.eisbn_list=9780769549262&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6410170&rfr_iscdi=true