EEG Dataset Reduction and Feature Extraction Using Discrete Cosine Transform

Brain-Computer interface (BCI) systems require intensive signal processing in order to form control signals for electronic devices. The majority of BCI systems work by reading and interpreting cortically evoked electro-potentials across the scalp via an electro-encephalogram (EEG). An important fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Birvinskas, D., Jusas, V., Martisius, I., Damasevicius, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue
container_start_page 199
container_title
container_volume
creator Birvinskas, D.
Jusas, V.
Martisius, I.
Damasevicius, R.
description Brain-Computer interface (BCI) systems require intensive signal processing in order to form control signals for electronic devices. The majority of BCI systems work by reading and interpreting cortically evoked electro-potentials across the scalp via an electro-encephalogram (EEG). An important factor affecting the efficiency of BCI is the number of EEG features. To reduce the number of features is an important way to improve the speed. In this paper, we consider application of discrete cosine transform (DCT) on EEG signals. DCT takes correlated input data and concentrates its energy in just first few transform coefficients. This method is used as a feature extraction step and allows data size reduction without losing important information. For classification we are using artificial neural networks with different number of hidden neurons and training functions. We conclude that the method can be successfully used for the feature extraction and dataset reduction.
doi_str_mv 10.1109/EMS.2012.88
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6410152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6410152</ieee_id><sourcerecordid>6410152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-f526bb4d5d0ec6ef96305c9d2d127475bdb83e08d0e6c24a3ada51aac1aa60a33</originalsourceid><addsrcrecordid>eNotjM1Kw0AYRUdEUGtWLt3MCyTO_89S2rQVKoK26_Jl5otEbCIzU9C3t1AXl8u5By4h95w1nDP_2L68N4Jx0Th3QW6ZNV4rL4y7JJW3jitjpfLWimtS5fzJGOPWGGXdDdm07YouoEDGQt8wHkMZppHCGOkSoRwT0vanJDjPuzyMH3Qx5JCwIJ1PJ0a6TTDmfkqHO3LVw1fG6r9nZLdst_N1vXldPc-fNnUQ3Ja618J0nYo6MgwGe28k08FHEbmwyuoudk4icydtglAgIYLmAOEUw0DKGXk4_w6IuP9OwwHS794ozrgW8g9XFE3D</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>EEG Dataset Reduction and Feature Extraction Using Discrete Cosine Transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Birvinskas, D. ; Jusas, V. ; Martisius, I. ; Damasevicius, R.</creator><creatorcontrib>Birvinskas, D. ; Jusas, V. ; Martisius, I. ; Damasevicius, R.</creatorcontrib><description>Brain-Computer interface (BCI) systems require intensive signal processing in order to form control signals for electronic devices. The majority of BCI systems work by reading and interpreting cortically evoked electro-potentials across the scalp via an electro-encephalogram (EEG). An important factor affecting the efficiency of BCI is the number of EEG features. To reduce the number of features is an important way to improve the speed. In this paper, we consider application of discrete cosine transform (DCT) on EEG signals. DCT takes correlated input data and concentrates its energy in just first few transform coefficients. This method is used as a feature extraction step and allows data size reduction without losing important information. For classification we are using artificial neural networks with different number of hidden neurons and training functions. We conclude that the method can be successfully used for the feature extraction and dataset reduction.</description><identifier>ISBN: 9781467349772</identifier><identifier>ISBN: 1467349771</identifier><identifier>EISBN: 0769549268</identifier><identifier>EISBN: 9780769549262</identifier><identifier>DOI: 10.1109/EMS.2012.88</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; braincomputer interface ; Classification algorithms ; discrete cosine transform ; Discrete cosine transforms ; Electroencephalography ; Feature extraction ; Neurons ; Training</subject><ispartof>2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation, 2012, p.199-204</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c217t-f526bb4d5d0ec6ef96305c9d2d127475bdb83e08d0e6c24a3ada51aac1aa60a33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6410152$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6410152$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Birvinskas, D.</creatorcontrib><creatorcontrib>Jusas, V.</creatorcontrib><creatorcontrib>Martisius, I.</creatorcontrib><creatorcontrib>Damasevicius, R.</creatorcontrib><title>EEG Dataset Reduction and Feature Extraction Using Discrete Cosine Transform</title><title>2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation</title><addtitle>ems</addtitle><description>Brain-Computer interface (BCI) systems require intensive signal processing in order to form control signals for electronic devices. The majority of BCI systems work by reading and interpreting cortically evoked electro-potentials across the scalp via an electro-encephalogram (EEG). An important factor affecting the efficiency of BCI is the number of EEG features. To reduce the number of features is an important way to improve the speed. In this paper, we consider application of discrete cosine transform (DCT) on EEG signals. DCT takes correlated input data and concentrates its energy in just first few transform coefficients. This method is used as a feature extraction step and allows data size reduction without losing important information. For classification we are using artificial neural networks with different number of hidden neurons and training functions. We conclude that the method can be successfully used for the feature extraction and dataset reduction.</description><subject>Artificial neural networks</subject><subject>braincomputer interface</subject><subject>Classification algorithms</subject><subject>discrete cosine transform</subject><subject>Discrete cosine transforms</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Neurons</subject><subject>Training</subject><isbn>9781467349772</isbn><isbn>1467349771</isbn><isbn>0769549268</isbn><isbn>9780769549262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjM1Kw0AYRUdEUGtWLt3MCyTO_89S2rQVKoK26_Jl5otEbCIzU9C3t1AXl8u5By4h95w1nDP_2L68N4Jx0Th3QW6ZNV4rL4y7JJW3jitjpfLWimtS5fzJGOPWGGXdDdm07YouoEDGQt8wHkMZppHCGOkSoRwT0vanJDjPuzyMH3Qx5JCwIJ1PJ0a6TTDmfkqHO3LVw1fG6r9nZLdst_N1vXldPc-fNnUQ3Ja618J0nYo6MgwGe28k08FHEbmwyuoudk4icydtglAgIYLmAOEUw0DKGXk4_w6IuP9OwwHS794ozrgW8g9XFE3D</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Birvinskas, D.</creator><creator>Jusas, V.</creator><creator>Martisius, I.</creator><creator>Damasevicius, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>EEG Dataset Reduction and Feature Extraction Using Discrete Cosine Transform</title><author>Birvinskas, D. ; Jusas, V. ; Martisius, I. ; Damasevicius, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-f526bb4d5d0ec6ef96305c9d2d127475bdb83e08d0e6c24a3ada51aac1aa60a33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>braincomputer interface</topic><topic>Classification algorithms</topic><topic>discrete cosine transform</topic><topic>Discrete cosine transforms</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Neurons</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Birvinskas, D.</creatorcontrib><creatorcontrib>Jusas, V.</creatorcontrib><creatorcontrib>Martisius, I.</creatorcontrib><creatorcontrib>Damasevicius, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Birvinskas, D.</au><au>Jusas, V.</au><au>Martisius, I.</au><au>Damasevicius, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>EEG Dataset Reduction and Feature Extraction Using Discrete Cosine Transform</atitle><btitle>2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation</btitle><stitle>ems</stitle><date>2012-11</date><risdate>2012</risdate><spage>199</spage><epage>204</epage><pages>199-204</pages><isbn>9781467349772</isbn><isbn>1467349771</isbn><eisbn>0769549268</eisbn><eisbn>9780769549262</eisbn><coden>IEEPAD</coden><abstract>Brain-Computer interface (BCI) systems require intensive signal processing in order to form control signals for electronic devices. The majority of BCI systems work by reading and interpreting cortically evoked electro-potentials across the scalp via an electro-encephalogram (EEG). An important factor affecting the efficiency of BCI is the number of EEG features. To reduce the number of features is an important way to improve the speed. In this paper, we consider application of discrete cosine transform (DCT) on EEG signals. DCT takes correlated input data and concentrates its energy in just first few transform coefficients. This method is used as a feature extraction step and allows data size reduction without losing important information. For classification we are using artificial neural networks with different number of hidden neurons and training functions. We conclude that the method can be successfully used for the feature extraction and dataset reduction.</abstract><pub>IEEE</pub><doi>10.1109/EMS.2012.88</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467349772
ispartof 2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation, 2012, p.199-204
issn
language eng
recordid cdi_ieee_primary_6410152
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
braincomputer interface
Classification algorithms
discrete cosine transform
Discrete cosine transforms
Electroencephalography
Feature extraction
Neurons
Training
title EEG Dataset Reduction and Feature Extraction Using Discrete Cosine Transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=EEG%20Dataset%20Reduction%20and%20Feature%20Extraction%20Using%20Discrete%20Cosine%20Transform&rft.btitle=2012%20Sixth%20UKSim/AMSS%20European%20Symposium%20on%20Computer%20Modeling%20and%20Simulation&rft.au=Birvinskas,%20D.&rft.date=2012-11&rft.spage=199&rft.epage=204&rft.pages=199-204&rft.isbn=9781467349772&rft.isbn_list=1467349771&rft.coden=IEEPAD&rft_id=info:doi/10.1109/EMS.2012.88&rft_dat=%3Cieee_6IE%3E6410152%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769549268&rft.eisbn_list=9780769549262&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6410152&rfr_iscdi=true