Nonlinear Least Squares Methods for Joint DOA and Pitch Estimation

In this paper, we consider the problem of joint direction-of-arrival (DOA) and fundamental frequency estimation. Joint estimation enables robust estimation of these parameters in multi-source scenarios where separate estimators may fail. First, we derive the exact and asymptotic Cramér-Rao bounds f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2013-05, Vol.21 (5), p.923-933
Hauptverfasser: Jensen, J. R., Christensen, M. G., Jensen, S. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 933
container_issue 5
container_start_page 923
container_title IEEE transactions on audio, speech, and language processing
container_volume 21
creator Jensen, J. R.
Christensen, M. G.
Jensen, S. H.
description In this paper, we consider the problem of joint direction-of-arrival (DOA) and fundamental frequency estimation. Joint estimation enables robust estimation of these parameters in multi-source scenarios where separate estimators may fail. First, we derive the exact and asymptotic Cramér-Rao bounds for the joint estimation problem. Then, we propose a nonlinear least squares (NLS) and an approximate NLS (aNLS) estimator for joint DOA and fundamental frequency estimation. The proposed estimators are maximum likelihood estimators when: 1) the noise is white Gaussian, 2) the environment is anechoic, and 3) the source of interest is in the far-field. Otherwise, the methods still approximately yield maximum likelihood estimates. Simulations on synthetic data show that the proposed methods have similar or better performance than state-of-the-art methods for DOA and fundamental frequency estimation. Moreover, simulations on real-life data indicate that the NLS and aNLS methods are applicable even when reverberation is present and the noise is not white Gaussian.
doi_str_mv 10.1109/TASL.2013.2239290
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6409418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6409418</ieee_id><sourcerecordid>27450664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-93d2334dfc063533b0d994a84c5c9f35bccd523fcb8e7d9b7c8542930c5f1f503</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNNywTbI-dxMtSykuBIrWsI8cP1SgkxTYL_p5WrbKaK809o9FB6JqSnFIi79azVZ0zQiFnDCST5ARNqBBVVkrGT8dMi3N0EeMXIRwKTifo_n3oO99bFXBtVUx49fOrgo34zabNYCJ2Q8Cvg-8TfljOsOoN_vBJb_AiJv-tkh_6S3TmVBft1XFO0efjYj1_zurl08t8VmcaoEqZBMMAuHGaFCAAWmKk5KriWmjpQLRaG8HA6baypZFtqSvBmQSihaNOEJgierirwxBjsK7Zht0L4a-hpNlLaPYSmr2E5ihhx9wemK2KWnUuqF77OIKs5IIUBd_1bg49b60d1wUnktMK_gFmBmSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear Least Squares Methods for Joint DOA and Pitch Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Jensen, J. R. ; Christensen, M. G. ; Jensen, S. H.</creator><creatorcontrib>Jensen, J. R. ; Christensen, M. G. ; Jensen, S. H.</creatorcontrib><description>In this paper, we consider the problem of joint direction-of-arrival (DOA) and fundamental frequency estimation. Joint estimation enables robust estimation of these parameters in multi-source scenarios where separate estimators may fail. First, we derive the exact and asymptotic Cramér-Rao bounds for the joint estimation problem. Then, we propose a nonlinear least squares (NLS) and an approximate NLS (aNLS) estimator for joint DOA and fundamental frequency estimation. The proposed estimators are maximum likelihood estimators when: 1) the noise is white Gaussian, 2) the environment is anechoic, and 3) the source of interest is in the far-field. Otherwise, the methods still approximately yield maximum likelihood estimates. Simulations on synthetic data show that the proposed methods have similar or better performance than state-of-the-art methods for DOA and fundamental frequency estimation. Moreover, simulations on real-life data indicate that the NLS and aNLS methods are applicable even when reverberation is present and the noise is not white Gaussian.</description><identifier>ISSN: 1558-7916</identifier><identifier>EISSN: 1558-7924</identifier><identifier>DOI: 10.1109/TASL.2013.2239290</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Cramér-Rao lower bound ; Detection, estimation, filtering, equalization, prediction ; Direction of arrival estimation ; Estimation ; Exact sciences and technology ; Frequency estimation ; fundamental frequency estimation ; Information, signal and communications theory ; joint estimation ; Joints ; non-linear least squares ; Sensors ; Signal and communications theory ; Signal, noise ; Speech ; Speech processing ; Telecommunications and information theory</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2013-05, Vol.21 (5), p.923-933</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-93d2334dfc063533b0d994a84c5c9f35bccd523fcb8e7d9b7c8542930c5f1f503</citedby><cites>FETCH-LOGICAL-c338t-93d2334dfc063533b0d994a84c5c9f35bccd523fcb8e7d9b7c8542930c5f1f503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6409418$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6409418$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27450664$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, J. R.</creatorcontrib><creatorcontrib>Christensen, M. G.</creatorcontrib><creatorcontrib>Jensen, S. H.</creatorcontrib><title>Nonlinear Least Squares Methods for Joint DOA and Pitch Estimation</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>In this paper, we consider the problem of joint direction-of-arrival (DOA) and fundamental frequency estimation. Joint estimation enables robust estimation of these parameters in multi-source scenarios where separate estimators may fail. First, we derive the exact and asymptotic Cramér-Rao bounds for the joint estimation problem. Then, we propose a nonlinear least squares (NLS) and an approximate NLS (aNLS) estimator for joint DOA and fundamental frequency estimation. The proposed estimators are maximum likelihood estimators when: 1) the noise is white Gaussian, 2) the environment is anechoic, and 3) the source of interest is in the far-field. Otherwise, the methods still approximately yield maximum likelihood estimates. Simulations on synthetic data show that the proposed methods have similar or better performance than state-of-the-art methods for DOA and fundamental frequency estimation. Moreover, simulations on real-life data indicate that the NLS and aNLS methods are applicable even when reverberation is present and the noise is not white Gaussian.</description><subject>Applied sciences</subject><subject>Cramér-Rao lower bound</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Direction of arrival estimation</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Frequency estimation</subject><subject>fundamental frequency estimation</subject><subject>Information, signal and communications theory</subject><subject>joint estimation</subject><subject>Joints</subject><subject>non-linear least squares</subject><subject>Sensors</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Speech</subject><subject>Speech processing</subject><subject>Telecommunications and information theory</subject><issn>1558-7916</issn><issn>1558-7924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNNywTbI-dxMtSykuBIrWsI8cP1SgkxTYL_p5WrbKaK809o9FB6JqSnFIi79azVZ0zQiFnDCST5ARNqBBVVkrGT8dMi3N0EeMXIRwKTifo_n3oO99bFXBtVUx49fOrgo34zabNYCJ2Q8Cvg-8TfljOsOoN_vBJb_AiJv-tkh_6S3TmVBft1XFO0efjYj1_zurl08t8VmcaoEqZBMMAuHGaFCAAWmKk5KriWmjpQLRaG8HA6baypZFtqSvBmQSihaNOEJgierirwxBjsK7Zht0L4a-hpNlLaPYSmr2E5ihhx9wemK2KWnUuqF77OIKs5IIUBd_1bg49b60d1wUnktMK_gFmBmSA</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Jensen, J. R.</creator><creator>Christensen, M. G.</creator><creator>Jensen, S. H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130501</creationdate><title>Nonlinear Least Squares Methods for Joint DOA and Pitch Estimation</title><author>Jensen, J. R. ; Christensen, M. G. ; Jensen, S. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-93d2334dfc063533b0d994a84c5c9f35bccd523fcb8e7d9b7c8542930c5f1f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Cramér-Rao lower bound</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Direction of arrival estimation</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Frequency estimation</topic><topic>fundamental frequency estimation</topic><topic>Information, signal and communications theory</topic><topic>joint estimation</topic><topic>Joints</topic><topic>non-linear least squares</topic><topic>Sensors</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Speech</topic><topic>Speech processing</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, J. R.</creatorcontrib><creatorcontrib>Christensen, M. G.</creatorcontrib><creatorcontrib>Jensen, S. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jensen, J. R.</au><au>Christensen, M. G.</au><au>Jensen, S. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Least Squares Methods for Joint DOA and Pitch Estimation</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>21</volume><issue>5</issue><spage>923</spage><epage>933</epage><pages>923-933</pages><issn>1558-7916</issn><eissn>1558-7924</eissn><coden>ITASD8</coden><abstract>In this paper, we consider the problem of joint direction-of-arrival (DOA) and fundamental frequency estimation. Joint estimation enables robust estimation of these parameters in multi-source scenarios where separate estimators may fail. First, we derive the exact and asymptotic Cramér-Rao bounds for the joint estimation problem. Then, we propose a nonlinear least squares (NLS) and an approximate NLS (aNLS) estimator for joint DOA and fundamental frequency estimation. The proposed estimators are maximum likelihood estimators when: 1) the noise is white Gaussian, 2) the environment is anechoic, and 3) the source of interest is in the far-field. Otherwise, the methods still approximately yield maximum likelihood estimates. Simulations on synthetic data show that the proposed methods have similar or better performance than state-of-the-art methods for DOA and fundamental frequency estimation. Moreover, simulations on real-life data indicate that the NLS and aNLS methods are applicable even when reverberation is present and the noise is not white Gaussian.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2013.2239290</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1558-7916
ispartof IEEE transactions on audio, speech, and language processing, 2013-05, Vol.21 (5), p.923-933
issn 1558-7916
1558-7924
language eng
recordid cdi_ieee_primary_6409418
source IEEE Electronic Library (IEL)
subjects Applied sciences
Cramér-Rao lower bound
Detection, estimation, filtering, equalization, prediction
Direction of arrival estimation
Estimation
Exact sciences and technology
Frequency estimation
fundamental frequency estimation
Information, signal and communications theory
joint estimation
Joints
non-linear least squares
Sensors
Signal and communications theory
Signal, noise
Speech
Speech processing
Telecommunications and information theory
title Nonlinear Least Squares Methods for Joint DOA and Pitch Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Least%20Squares%20Methods%20for%20Joint%20DOA%20and%20Pitch%20Estimation&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Jensen,%20J.%20R.&rft.date=2013-05-01&rft.volume=21&rft.issue=5&rft.spage=923&rft.epage=933&rft.pages=923-933&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2013.2239290&rft_dat=%3Cpascalfrancis_RIE%3E27450664%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6409418&rfr_iscdi=true